Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
300  structures 6447  species 5  interactions 363409  sequences 730  architectures

Family: ABC_tran (PF00005)

Summary: ABC transporter

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "ATP-binding domain of ABC transporters". More...

ATP-binding domain of ABC transporters Edit Wikipedia article

2hyd.gif
Multidrug ABC transporter SAV1866, closed state
Identifiers
Symbol ABC_tran
Pfam PF00005
InterPro IPR003439
PROSITE PDOC00185
SCOP 1b0u
SUPERFAMILY 1b0u
TCDB 3.A.1
OPM superfamily 17
OPM protein 2hyd

In molecular biology, ATP-binding domain of ABC transporters is a water-soluble domain of transmembrane ABC transporters.

ABC transporters belong to the ATP-Binding Cassette superfamily, which uses the hydrolysis of ATP to translocate a variety of compounds across biological membranes. ABC transporters are minimally constituted of two conserved regions: a highly conserved ATP binding cassette (ABC) and a less conserved transmembrane domain (TMD). These regions can be found on the same protein or on two different ones. Most ABC transporters function as a dimer and therefore are constituted of four domains, two ABC modules and two TMDs.

Biological function[edit]

ABC transporters are involved in the export or import of a wide variety of substrates ranging from small ions to macromolecules. The major function of ABC import systems is to provide essential nutrients to bacteria. They are found only in prokaryotes and their four constitutive domains are usually encoded by independent polypeptides (two ABC proteins and two TMD proteins). Prokaryotic importers require additional extracytoplasmic binding proteins (one or more per systems) for function. In contrast, export systems are involved in the extrusion of noxious substances, the export of extracellular toxins and the targeting of membrane components. They are found in all living organisms and in general the TMD is fused to the ABC module in a variety of combinations. Some eukaryotic exporters encode the four domains on the same polypeptide chain.

Amino acid sequence[edit]

The ABC module (approximately two hundred amino acid residues) is known to bind and hydrolyze ATP, thereby coupling transport to ATP hydrolysis in a large number of biological processes. The cassette is duplicated in several subfamilies. Its primary sequence is highly conserved, displaying a typical phosphate-binding loop: Walker A, and a magnesium binding site: Walker B. Besides these two regions, three other conserved motifs are present in the ABC cassette: the switch region which contains a histidine loop, postulated to polarize the attacking water molecule for hydrolysis, the signature conserved motif (LSGGQ) specific to the ABC transporter, and the Q-motif (between Walker A and the signature), which interacts with the gamma phosphate through a water bond. The Walker A, Walker B, Q-loop and switch region form the nucleotide binding site.

3D structure[edit]

The 3D structure of a monomeric ABC module adopts a stubby L-shape with two distinct arms.[1][2] ArmI (mainly beta-strand) contains Walker A and Walker B. The important residues for ATP hydrolysis and/or binding are located in the P-loop. The ATP-binding pocket is located at the extremity of armI. The perpendicular armII contains mostly the alpha helical subdomain with the signature motif. It only seems to be required for structural integrity of the ABC module. ArmII is in direct contact with the TMD. The hinge between armI and armII contains both the histidine loop and the Q-loop, making contact with the gamma phosphate of the ATP molecule. ATP hydrolysis leads to a conformational change that could facilitate ADP release. In the dimer the two ABC cassettes contact each other through hydrophobic interactions at the antiparallel beta-sheet of armI by a two-fold axis.

Human proteins containing this domain[edit]

ABCA1; ABCA10; ABCA12; ABCA13; ABCA2; ABCA3; ABCA4; ABCA5; ABCA6; ABCA7; ABCA8; ABCA9; ABCB1; ABCB10; ABCB11; ABCB4; ABCB5; ABCB6; ABCB7; ABCB8; ABCB9; ABCC1; ABCC10; ABCC11; ABCC12; ABCC2; ABCC3; ABCC4; ABCC5; ABCC6; ABCC8; ABCC9; ABCD1; ABCD2; ABCD3; ABCD4; ABCE1; ABCF1; ABCF2; ABCF3; ABCG1; ABCG2; ABCG4; ABCG5; ABCG8; CFTR; MRP3; TAP1; TAP2; TAPL;

References[edit]

  1. ^ Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF, Kim SH (December 1998). "Crystal structure of the ATP-binding subunit of an ABC transporter". Nature 396 (6712): 703–7. doi:10.1038/25393. PMID 9872322. 
  2. ^ Hollenstein K, Dawson RJ, Locher KP (August 2007). "Structure and mechanism of ABC transporter proteins". Curr. Opin. Struct. Biol. 17 (4): 412–8. doi:10.1016/j.sbi.2007.07.003. PMID 17723295. 
  • Rosteck Jr, P. R.; Reynolds, P. A.; Hershberger, C. L. (1991). "Homology between proteins controlling Streptomyces fradiae tylosin resistance and ATP-binding transport". Gene 102 (1): 27–32. PMID 1864505. 
  • Blight, M. A.; Holland, I. B. (1990). "Structure and function of haemolysin B,P-glycoprotein and other members of a novel family of membrane translocators". Molecular microbiology 4 (6): 873–880. PMID 1977073. 
  • Higgins, C. F.; Hyde, S. C.; Mimmack, M. M.; Gileadi, U.; Gill, D. R.; Gallagher, M. P. (1990). "Binding protein-dependent transport systems". Journal of bioenergetics and biomembranes 22 (4): 571–592. doi:10.1007/BF00762962. PMID 2229036. 

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

ABC transporter Provide feedback

ABC transporters for a large family of proteins responsible for translocation of a variety of compounds across biological membranes. ABC transporters are the largest family of proteins in many completely sequenced bacteria. ABC transporters are composed of two copies of this domain and two copies of a transmembrane domain PF00664. These four domains may belong to a single polypeptide as in P13569 or belong in different polypeptide chains.

Literature references

  1. Rosteck PR Jr, Reynolds PA, Hershberger CL; , Gene 1991;102:27-32.: Homology between proteins controlling Streptomyces fradiae tylosin resistance and ATP-binding transport. PUBMED:1864505 EPMC:1864505

  2. Blight MA, Holland IB; , Mol Microbiol 1990;4:873-880.: Structure and function of haemolysin B,P-glycoprotein and other members of a novel family of membrane translocators. PUBMED:1977073 EPMC:1977073

  3. Higgins CF, Hyde SC, Mimmack MM, Gileadi U, Gill DR, Gallagher MP; , J Bioenerg Biomembr 1990;22:571-592.: Binding protein-dependent transport systems. PUBMED:2229036 EPMC:2229036

  4. Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF, Kim SH; , Nature 1998;396:703-707.: Crystal structure of the ATP-binding subunit of an ABC transporter. PUBMED:9872322 EPMC:9872322


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR003439

ABC transporters belong to the ATP-Binding Cassette (ABC) superfamily, which uses the hydrolysis of ATP to energise diverse biological systems. ABC transporters minimally consist of two conserved regions: a highly conserved ATP binding cassette (ABC) and a less conserved transmembrane domain (TMD). These can be found on the same protein or on two different ones. Most ABC transporters function as a dimer and therefore are constituted of four domains, two ABC modules and two TMDs.

ABC transporters are involved in the export or import of a wide variety of substrates ranging from small ions to macromolecules. The major function of ABC import systems is to provide essential nutrients to bacteria. They are found only in prokaryotes and their four constitutive domains are usually encoded by independent polypeptides (two ABC proteins and two TMD proteins). Prokaryotic importers require additional extracytoplasmic binding proteins (one or more per systems) for function. In contrast, export systems are involved in the extrusion of noxious substances, the export of extracellular toxins and the targeting of membrane components. They are found in all living organisms and in general the TMD is fused to the ABC module in a variety of combinations. Some eukaryotic exporters encode the four domains on the same polypeptide chain [PUBMED:9873074].

The ABC module (approximately two hundred amino acid residues) is known to bind and hydrolyse ATP, thereby coupling transport to ATP hydrolysis in a large number of biological processes. The cassette is duplicated in several subfamilies. Its primary sequence is highly conserved, displaying a typical phosphate-binding loop: Walker A, and a magnesium binding site: Walker B. Besides these two regions, three other conserved motifs are present in the ABC cassette: the switch region which contains a histidine loop, postulated to polarise the attaching water molecule for hydrolysis, the signature conserved motif (LSGGQ) specific to the ABC transporter, and the Q-motif (between Walker A and the signature), which interacts with the gamma phosphate through a water bond. The Walker A, Walker B, Q-loop and switch region form the nucleotide binding site [PUBMED:11421269, PUBMED:1282354, PUBMED:9640644].

The 3D structure of a monomeric ABC module adopts a stubby L-shape with two distinct arms. ArmI (mainly beta-strand) contains Walker A and Walker B. The important residues for ATP hydrolysis and/or binding are located in the P-loop. The ATP-binding pocket is located at the extremity of armI. The perpendicular armII contains mostly the alpha helical subdomain with the signature motif. It only seems to be required for structural integrity of the ABC module. ArmII is in direct contact with the TMD. The hinge between armI and armII contains both the histidine loop and the Q-loop, making contact with the gamma phosphate of the ATP molecule. ATP hydrolysis leads to a conformational change that could facilitate ADP release. In the dimer the two ABC cassettes contact each other through hydrophobic interactions at the antiparallel beta-sheet of armI by a two-fold axis [PUBMED:11988180, PUBMED:11470432, PUBMED:11402022, PUBMED:9872322, PUBMED:11080142, PUBMED:11532960].

The ATP-Binding Cassette (ABC) superfamily forms one of the largest of all protein families with a diversity of physiological functions [PUBMED:9873074]. Several studies have shown that there is a correlation between the functional characterisation and the phylogenetic classification of the ABC cassette [PUBMED:9873074, PUBMED:11421270]. More than 50 subfamilies have been described based on a phylogenetic and functional classification [PUBMED:9873074, PUBMED:11421269, PUBMED:11421270]; (for further information see http://www.tcdb.org/tcdb/index.php?tc=3.A.1).

On the basis of sequence similarities a family of related ATP-binding proteins has been characterised [PUBMED:2229036, PUBMED:3288195, PUBMED:3762694, PUBMED:3762695, PUBMED:1977073].

The proteins belonging to this family also contain one or two copies of the 'A' consensus sequence [PUBMED:6329717] or the 'P-loop' [PUBMED:2126155] (see INTERPRO).

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan P-loop_NTPase (CL0023), which has the following description:

AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].

The clan contains the following 198 members:

6PF2K AAA AAA-ATPase_like AAA_10 AAA_11 AAA_12 AAA_13 AAA_14 AAA_15 AAA_16 AAA_17 AAA_18 AAA_19 AAA_2 AAA_21 AAA_22 AAA_23 AAA_24 AAA_25 AAA_26 AAA_27 AAA_28 AAA_29 AAA_3 AAA_30 AAA_31 AAA_32 AAA_33 AAA_34 AAA_35 AAA_4 AAA_5 AAA_6 AAA_7 AAA_8 AAA_9 AAA_PrkA ABC_ATPase ABC_tran ABC_tran_2 Adeno_IVa2 Adenylsucc_synt ADK AFG1_ATPase AIG1 APS_kinase Arch_ATPase Arf ArgK ArsA_ATPase ATP-synt_ab ATP_bind_1 ATP_bind_2 Bac_DnaA CbiA CMS1 CoaE CobA_CobO_BtuR CobU cobW CPT CTP_synth_N Cytidylate_kin Cytidylate_kin2 DAP3 DEAD DEAD_2 DLIC DNA_pack_C DNA_pack_N DNA_pol3_delta DNA_pol3_delta2 DnaB_C dNK DUF1253 DUF1611 DUF2075 DUF2478 DUF258 DUF2791 DUF2813 DUF3584 DUF463 DUF815 DUF853 DUF87 DUF927 Dynamin_N Exonuc_V_gamma FeoB_N Fer4_NifH Flavi_DEAD FTHFS FtsK_SpoIIIE G-alpha Gal-3-0_sulfotr GBP GTP_EFTU GTP_EFTU_D2 GTP_EFTU_D4 Gtr1_RagA Guanylate_kin GvpD HDA2-3 Helicase_C Helicase_C_2 Helicase_C_4 Helicase_RecD Herpes_Helicase Herpes_ori_bp Herpes_TK IIGP IPPT IPT IstB_IS21 KaiC KAP_NTPase Kinesin Kinesin-relat_1 Kinesin-related KTI12 LpxK MCM MEDS Mg_chelatase Mg_chelatase_2 MipZ Miro MMR_HSR1 MobB MukB MutS_V Myosin_head NACHT NB-ARC NOG1 NTPase_1 ParA Parvo_NS1 PAXNEB PduV-EutP PhoH PIF1 Podovirus_Gp16 Polyoma_lg_T_C Pox_A32 PPK2 PPV_E1_C PRK Rad17 Rad51 Ras RecA ResIII RHD3 RHSP RNA12 RNA_helicase RuvB_N SbcCD_C SecA_DEAD Septin Sigma54_activ_2 Sigma54_activat SKI SMC_N SNF2_N Spore_IV_A SRP54 SRPRB Sulfotransfer_1 Sulfotransfer_2 Sulfotransfer_3 Sulphotransf T2SE T4SS-DNA_transf Terminase_1 Terminase_3 Terminase_6 Terminase_GpA Thymidylate_kin TIP49 TK TniB Torsin TraG-D_C tRNA_lig_kinase TrwB_AAD_bind UPF0079 UvrD-helicase UvrD_C UvrD_C_2 Viral_helicase1 VirC1 VirE YhjQ Zeta_toxin Zot

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(55)
Full
(363409)
Representative proteomes NCBI
(270413)
Meta
(81790)
RP15
(28903)
RP35
(57358)
RP55
(77150)
RP75
(93265)
Jalview View  View  View  View  View  View  View  View 
HTML View               
PP/heatmap 1              
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(55)
Full
(363409)
Representative proteomes NCBI
(270413)
Meta
(81790)
RP15
(28903)
RP35
(57358)
RP55
(77150)
RP75
(93265)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(55)
Full
(363409)
Representative proteomes NCBI
(270413)
Meta
(81790)
RP15
(28903)
RP35
(57358)
RP55
(77150)
RP75
(93265)
Raw Stockholm Download     Download   Download   Download   Download     Download  
Gzipped Download     Download   Download   Download   Download     Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Domain
Author: Sonnhammer ELL, Bateman A
Number in seed: 55
Number in full: 363409
Average length of the domain: 147.80 aa
Average identity of full alignment: 27 %
Average coverage of the sequence by the domain: 41.67 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null --hand HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 23.1 23.1
Trusted cut-off 23.1 23.1
Noise cut-off 23.0 23.0
Model length: 137
Family (HMM) version: 22
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 5 interactions for this family. More...

TOBE_2 ABC_tran ABC_membrane BPD_transp_1 FecCD

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the ABC_tran domain has been found. There are 300 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...