Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
214  structures 9758  species 1  interaction 14731  sequences 43  architectures

Family: Alk_phosphatase (PF00245)

Summary: Alkaline phosphatase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Alkaline phosphatase". More...

Alkaline phosphatase Edit Wikipedia article

Alkaline phosphatase
Ribbon diagram (rainbow-color, N-terminus = blue, C-terminus = red) of the dimeric structure of bacterial alkaline phosphatase.[1]
EC number
CAS number 9001-78-9
IntEnz IntEnz view
ExPASy NiceZyme view
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Alkaline phosphatase
PDB 1alk EBI.jpg
Structure of alkaline phosphatase.[1]
Symbol Alk_phosphatase
Pfam PF00245
InterPro IPR001952
SCOP 1alk

Alkaline phosphatase (ALP, ALKP, ALPase, Alk Phos) (EC is a hydrolase enzyme responsible for removing phosphate groups from many types of molecules, including nucleotides, proteins, and alkaloids. The process of removing the phosphate group is called dephosphorylation. As the name suggests, alkaline phosphatases are most effective in an alkaline environment. It is sometimes used synonymously as basic phosphatase.[2]


In Gram-negative bacteria, alkaline phosphatase is located in the periplasmic space, external to the cell membrane. Since this space is much more subject to environmental variation than the actual interior of the cell, bacterial alkaline phosphatase is comparatively resistant to inactivation, denaturation, and degradation, and also has a higher rate of activity. Although the purpose of the enzyme is not fully resolved, the simple hypothesis that it is a means for the bacteria to generate free phosphate groups for uptake and use is supported by the fact that alkaline phosphatase is usually produced by the bacteria only during phosphate starvation and not when phosphate is plentiful.[3] However, other possibilities exist. For instance, the presence of phosphate groups usually prevents organic molecules from passing through the membrane; therefore, dephosphorylating them may be important for bacterial uptake of organic compounds in the wild.[4] Some complexities of bacterial regulation and metabolism suggest that other, more subtle, purposes for the enzyme may also play a role for the cell. In the laboratory, however, mutant Escherichia coli lacking alkaline phosphatase survive quite well, as do mutants unable to shut off alkaline phosphatase production.[5]

The optimal pH for the activity of the E. coli enzyme is 8.0[6] while the bovine enzyme optimum pH is slightly higher at 8.5.[7]

Use in research

Typical use in the lab for alkaline phosphatases includes removing phosphate monoester to prevent self-ligation.[8]

Common alkaline phosphatases used in research includes:

Alkaline phosphatase has become a useful tool in molecular biology laboratories, since DNA normally possesses phosphate groups on the 5' end. Removing these phosphates prevents the DNA from ligating (the 5' end attaching to the 3' end), thereby keeping DNA molecules linear until the next step of the process for which they are being prepared; also, removal of the phosphate groups allows radiolabeling (replacement by radioactive phosphate groups) in order to measure the presence of the labeled DNA through further steps in the process or experiment. For these purposes, the alkaline phosphatase from shrimp is the most useful, as it is the easiest to inactivate once it has done its job.

Another important use of alkaline phosphatase is as a label for enzyme immunoassays.

Undifferentiated pluripotent stem cells have elevated levels of alkaline phosphatase on their cell membrane, therefore alkaline phosphatase staining is used to detect these cells and to test pluripotency (i.e., embryonic stem cells or embryonal carcinoma cells).[9]

Dairy Industry

Alkaline phosphatase is commonly used in the dairy industry as an indicator of successful pasteurization. This is because the most heat stable bacterium found in milk, Mycobacterium paratuberculosis, is destroyed by temperatures lower than those required to denature ALP. Therefore ALP presence is ideal for indicating successful pasteurization.[10][11]

Pasteurization verification is typically performed by measuring the fluorescence of a solution which becomes fluorescent when exposed to active ALP. Fluorimetry assays are required by milk producers in the UK to prove alkaline phosphatase has been denatured,[12] as p-Nitrophenylphosphate tests are not considered accurate enough to meet health standards.

Alternatively the colour change of a para-Nitrophenylphosphate substrate in a buffered solution (Aschaffenburg Mullen Test) can be used.[13] Raw milk would typically produce a yellow colouration within a couple of minutes, whereas properly pasteurised milk should show no change. There are exceptions to this, as in the case of heat-stable alkaline phophatases produced by some bacteria but these bacteria should not be present in milk.


All mammalian alkaline phosphatase isoenzymes except placental (PALP and SEAP) are inhibited by homoarginine, and, in similar manner, all except the intestinal and placental ones are blocked by levamisole. Heating for ~2 hours at 65 Â°C inactivated most isoenzymes except Placental isoforms (PALP and SEAP).[14] Phosphate is another inhibitor which competitively inhibits alkaline phosphatase.[15]



In humans, alkaline phosphatase is present in all tissues throughout the entire body, but is particularly concentrated in liver, bile duct, kidney, bone, intestinal mucosa and the placenta. Humans and most other mammals contain the following alkaline phosphatase isozymes:

  • ALPI – intestinal (molecular weight of 150 kDa)
  • ALPL – tissue-nonspecific (liver/bone/kidney)
  • ALPP – placental (Regan isozyme)

Diagnostic use

Normal ALP levels in adults are approximately 20 to 140 IU/L,[16] though levels are significantly higher in children and pregnant women. Blood tests should always be interpreted using the reference range from the laboratory that performed the test. High ALP levels can occur if the bile ducts are obstructed.[17] Also, ALP increases if there is active bone formation occurring, as ALP is a byproduct of osteoblast activity (such as the case in Paget's disease of bone). Levels are also elevated in people with untreated Coeliac disease.[18] Lowered levels of ALP are less common than elevated levels. The source of elevated ALP levels can be deduced by obtaining serum levels of gamma glutamyltransferase (GGT). Concomitant increases of ALP with GGT should raise the suspicion of hepatobiliary disease.[19]

Elevated levels

If it is unclear why alkaline phosphatase is elevated, isoenzyme studies using electrophoresis can confirm the source of the ALP. Heat stability also distinguishes bone and liver isoenzymes ("bone burns, liver lasts"). Placental alkaline phosphatase is elevated in seminomas[20] and active forms of rickets, as well as in the following diseases and conditions:[21]

Lowered levels

The following conditions or diseases may lead to reduced levels of alkaline phosphatase:

In addition, the following drugs have been demonstrated to reduce alkaline phosphatase:

  • Oral contraceptives[22]

Leukocyte alkaline phosphatase

Leukocyte alkaline phosphatase (LAP) is found within white blood cells. White blood cell levels of LAP can help in the diagnosis of certain conditions.

See also


  1. ^ a b PDB 1ALK: Kim EE, Wyckoff HW (March 1991). "Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis". J. Mol. Biol. 218 (2): 449–64. doi:10.1016/0022-2836(91)90724-K. PMID 2010919. 
  2. ^ Tamás L, Huttová J, Mistrk I, Kogan G (2002). "Effect of Carboxymethyl Chitin-Glucan on the Activity of Some Hydrolytic Enzymes in Maize Plants" (PDF). Chem. Pap. 56 (5): 326–329. 
  3. ^ Horiuchi T, Horiuchi S, Mizuno D (May 1959). "A possible negative feedback phenomenon controlling formation of alkaline phosphomonoesterase in Escherichia coli". Nature 183 (4674): 1529–30. doi:10.1038/1831529b0. PMID 13666805. 
  4. ^ Ammerman JW, Azam F (March 1985). "Bacterial 5-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration". Science 227 (4692): 1338–40. doi:10.1126/science.227.4692.1338. PMID 17793769. 
  5. ^ Wanner BL, Latterell P (October 1980). "Mutants affected in alkaline phosphatase, expression: evidence for multiple positive regulators of the phosphate regulon in Escherichia coli". Genetics 96 (2): 353–66. PMC 1214304. PMID 7021308. 
  6. ^ Garen A, Levinthal C (March 1960). "A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase". Biochim. Biophys. Acta 38: 470–83. doi:10.1016/0006-3002(60)91282-8. PMID 13826559. 
  7. ^ Harada M, Udagawa N, Fukasawa K, Hiraoka BY, Mogi M (February 1986). "Inorganic pyrophosphatase activity of purified bovine pulp alkaline phosphatase at physiological pH". J. Dent. Res. 65 (2): 125–7. doi:10.1177/00220345860650020601. PMID 3003174. 
  8. ^ Maxam AM, Gilbert W (1980). "Sequencing end-labeled DNA with base-specific chemical cleavages". Meth. Enzymol. Methods in Enzymology 65 (1): 499–560. doi:10.1016/S0076-6879(80)65059-9. ISBN 978-0-12-181965-1. PMID 6246368. 
  9. ^ "Appendix E: Stem Cell Markers". Stem Cell Information. National Institutes of Health, U.S. Department of Health and Human Services. Retrieved 2013-09-24. 
  10. ^ Kay, H. (1935). "Some Results of the Application of a Simple Test for Efficiency of Pasteurisation". The Lancet 225 (5835): 1516–1518. doi:10.1016/S0140-6736(01)12532-8.  edit
  11. ^ Hoy, W. A.; Neave, F. K. (1937). "The Phosphatase Test for Efficient Pasteurisation". The Lancet 230 (5949): 595. doi:10.1016/S0140-6736(00)83378-4.  edit
  12. ^ BS EN ISO 11816-1:2013
  13. ^ Aschaffenburg R, Mullen JEC (1949). "A rapid and simple phosphatase test for milk". Journal of Dairy Research 16 (1): 58–67. doi:10.1017/S0022029900005288. 
  14. ^ Alkaline Phosphatase Why It Is Done from Everday Retrieved October 15, 2012.
  15. ^ Iqbal, J (2011) “Ann enzyme immobilized microassay in capillary electrophoresis for characterization and inhibition studies of alkaline phosphatases” J Anal. Biochem. 414, 226-231
  16. ^ "MedlinePlus Medical Encyclopedia: ALP isoenzyme test". 
  17. ^ ALP: The Test
  18. ^ Preussner, Harold T, HT (March 1998). "Detecting coeliac disease in your patients". American Family Physician 57 (5): 1023–1034. PMID 9518950. 
  19. ^ Vroon, David. "Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition". 
  20. ^ Lange PH, Millan JL, Stigbrand T, Vessella RL, Ruoslahti E, Fishman WH (August 1982). "Placental alkaline phosphatase as a tumor marker for seminoma". Cancer Res. 42 (8): 3244–7. PMID 7093962. 
  21. ^ Dugdale, David C. "ALP-bloodtest:MedlinePlus Medical Encyclopedia". MedlinePlus. Retrieved 2014-02-26. 
  22. ^ Schiele F, Vincent-Viry M, Fournier B, Starck M, Siest G (November 1998). "Biological effects of eleven combined oral contraceptives on serum triglycerides, gamma-glutamyltransferase, alkaline phosphatase, bilirubin and other biochemical variables". Clin. Chem. Lab. Med. 36 (11): 871–8. doi:10.1515/CCLM.1998.153. PMID 9877094. 
  23. ^ Arceci RJ, Hann IM, Smith OP, ed. (2006). Pediatric hematology (3rd ed.). Wiley-Blackwell. p. 763. ISBN 978-1-4051-3400-2. 

External links

Further reading

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Alkaline phosphatase Provide feedback

No Pfam abstract.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001952

This entry represents alkaline phosphatases (EC) (ALP), which act as non-specific phosphomonoesterases to hydrolyse phosphate esters, optimally at high pH. The reaction mechanism involves the attack of a serine alkoxide on a phosphorus of the substrate to form a transient covalent enzyme-phosphate complex, followed by the hydrolysis of the serine phosphate. Alkaline phosphatases are found in all kingdoms of life, with the exception of some plants. Alkaline phosphatases are metalloenzymes that exist as a dimer, each monomer binding metal ions. The metal ions they carry can differ, although zinc and magnesium are the most common. For example, Escherichia coli alkaline phosphatase (encoded by phoA) requires the presence of two zinc ions bound at the M1 and M2 metal sites, and one magnesium ion bound at the M3 site [PUBMED:15938627]. However, alkaline phosphatases from Thermotoga maritima and Bacillus subtilis require cobalt for maximal activity [PUBMED:11910033].

In mammals, there are four alkaline phosphatase isozymes: placental, placental-like (germ cell), intestinal and tissue-nonspecific (liver/bone/kidney). All four isozymes are anchored to the outer surface of the plasma membrane by a covalently attached glycosylphosphatidylinositol (GPI) anchor [PUBMED:17520090]. Human alkaline phosphatases have four metal binding sites: two for zinc, one for magnesium, and one for calcium ion. Placental alkaline phosphatase (ALPP or PLAP) is highly polymorphic, with at least three common alleles [PUBMED:11124260]. Its activity is down-regulated by a number of effectors such as l-phenylalanine, 5'-AMP, and by p-nitrophenyl-phosphonate (PNPPate) [PUBMED:15946677]. The placental-like isozyme (ALPPL or PLAP-like) is elevated in germ cell tumours. The intestinal isozyme (ALPI or IAP) has the ability to detoxify lipopolysaccharide and prevent bacterial invasion across the gut mucosal barrier [PUBMED:18292227]. The tissue-nonspecific isozyme (ALPL) is, and may play a role in skeletal mineralisation. Defects in ALPL are a cause of hypophosphatasia, including infantile-type (OMIM:241500), childhood-type (OMIM:241510) and adult-type (OMIM:146300). Hhypophosphatasia is an inherited metabolic bone disease characterised by defective skeletal mineralisation [PUBMED:17719863].

This entry also contains the related enzyme streptomycin-6-phosphate phosphatase (EC) (encoded by strK) from Streptomyces species. This enzyme is involved in the synthesis of the antibiotic streptomycin, specifically cleaving both streptomycin-6-phosphate and, more slowly, streptomycin-3-phosphate [PUBMED:1654502].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Alk_phosphatase (CL0088), which has the following description:

The members of this clan all share a common structure of their catalytic domains, which contain conserved metal binding residues [1].

The clan contains the following 10 members:

Alk_phosphatase DUF1501 DUF229 DUF4976 Metalloenzyme PglZ Phosphodiest Phosphoesterase Sulfatase Sulfatase_C


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: alk_phosphatase;
Type: Domain
Author: Finn RD
Number in seed: 10
Number in full: 14731
Average length of the domain: 327.10 aa
Average identity of full alignment: 35 %
Average coverage of the sequence by the domain: 85.35 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 80369284 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.4 20.4
Trusted cut-off 20.4 20.4
Noise cut-off 20.3 20.3
Model length: 416
Family (HMM) version: 16
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


There is 1 interaction for this family. More...



For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Alk_phosphatase domain has been found. There are 214 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...