Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
114  structures 4946  species 2  interactions 6057  sequences 6  architectures

Family: Cpn10 (PF00166)

Summary: Chaperonin 10 Kd subunit

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "GroES". More...

GroES Edit Wikipedia article

Heat shock 10kDa protein 1
Identifiers
Symbols HSPE1 ; CPN10; EPF; GROES; HSP10
External IDs OMIM600141 MGI104680 HomoloGene20500 GeneCards: HSPE1 Gene
RNA expression pattern
PBB GE HSPE1 205133 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 3336 15528
Ensembl ENSG00000115541 ENSMUSG00000073676
UniProt P61604 Q64433
RefSeq (mRNA) NM_002157 NM_008303
RefSeq (protein) NP_002148 NP_032329
Location (UCSC) Chr 2:
198.36 – 198.37 Mb
Chr 1:
55.09 – 55.09 Mb
PubMed search [1] [2]
Cpn10
PDB 1g31 EBI.jpg
gp31 co-chaperonin from bacteriophage t4
Identifiers
Symbol Cpn10
Pfam PF00166
Pfam clan CL0296
InterPro IPR020818
PROSITE PDOC00576
SCOP 1lep
SUPERFAMILY 1lep

Heat shock 10 kDa protein 1 (Hsp10) also known as chaperonin 10 (cpn10) or early-pregnancy factor (EPF) is a protein that in humans is encoded by the HSPE1 gene. The homolog in E. coli is GroES that is a chaperonin which usually works in conjunction with GroEL.[1]

GroES exists as a ring-shaped oligomer of between six to eight identical subunits, while the 60 kDa chaperonin (cpn60 - or groEL in bacteria) forms a structure comprising 2 stacked rings, each ring containing 7 identical subunits.[2] These ring structures assemble by self-stimulation in the presence of Mg2+-ATP. The central cavity of the cylindrical cpn60 tetradecamer provides an isolated environment for protein folding whilst cpn-10 binds to cpn-60 and synchronizes the release of the folded protein in an Mg2+-ATP dependent manner.[3] The binding of cpn10 to cpn60 inhibits the weak ATPase activity of cpn60.

Escherichia coli GroES has also been shown to bind ATP cooperatively, and with an affinity comparable to that of GroEL.[4] Each GroEL subunit contains three structurally distinct domains: an apical, an intermediate and an equatorial domain. The apical domain contains the binding sites for both GroES and the unfolded protein substrate. The equatorial domain contains the ATP-binding site and most of the oligomeric contacts. The intermediate domain links the apical and equatorial domains and transfers allosteric information between them. The GroEL oligomer is a tetradecamer, cylindrically shaped, that is organised in two heptameric rings stacked back to back. Each GroEL ring contains a central cavity, known as the `Anfinsen cage', that provides an isolated environment for protein folding. The identical 10 kDa subunits of GroES form a dome-like heptameric oligomer in solution. ATP binding to GroES may be important in charging the seven subunits of the interacting GroEL ring with ATP, to facilitate cooperative ATP binding and hydrolysis for substrate protein release.

Interactions

GroES has been shown to interact with GroEL.[5][6]

References

  1. ^ "Entrez Gene: HSPE1 heat shock 10kDa protein 1 (chaperonin 10)". 
  2. ^ Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (May 1988). "Homologous plant and bacterial proteins chaperone oligomeric protein assembly". Nature 333 (6171): 330–4. doi:10.1038/333330a0. PMID 2897629. 
  3. ^ Schmidt A, Schiesswohl M, Volker U, Hecker M, Schumann W (June 1992). "Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis". J. Bacteriol. 174 (12): 3993–9. PMC 206108. PMID 1350777. 
  4. ^ Martin J, Geromanos S, Tempst P, Hartl FU (November 1993). "Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES". Nature 366 (6452): 279–82. doi:10.1038/366279a0. PMID 7901771. 
  5. ^ Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S (April 1999). "Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells". EMBO J. 18 (8): 2040–8. doi:10.1093/emboj/18.8.2040. PMC 1171288. PMID 10205158. 
  6. ^ Lee KH, Kim HS, Jeong HS, Lee YS (October 2002). "Chaperonin GroESL mediates the protein folding of human liver mitochondrial aldehyde dehydrogenase in Escherichia coli". Biochem. Biophys. Res. Commun. 298 (2): 216–24. doi:10.1016/S0006-291X(02)02423-3. PMID 12387818. 

Further reading

External links

This article incorporates text from the public domain Pfam and InterPro IPR020818

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Chaperonin 10 Kd subunit Provide feedback

This family contains GroES and Gp31-like chaperonins. Gp31 is a functional co-chaperonin that is required for the folding and assembly of Gp23, a major capsid protein, during phage morphogenesis [1].

Literature references

  1. Hunt JF, van der Vies SM, Henry L, Deisenhofer J; , Cell 1997;90:361-371.: Structural adaptations in the specialized bacteriophage T4 co-chaperonin Gp31 expand the size of the Anfinsen cage. PUBMED:9244309 EPMC:9244309


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR020818

The chaperonins are `helper' molecules required for correct folding and subsequent assembly of some proteins [PUBMED:1349837]. These are required for normal cell growth [PUBMED:2897629], and are stress-induced, acting to stabilise or protect disassembled polypeptides under heat-shock conditions. Type I chaperonins present in eubacteria, mitochondria and chloroplasts require the concerted action of 2 proteins, chaperonin 60 (cpn60) and chaperonin 10 (cpn10) [PUBMED:12354603].

The 10 kDa chaperonin (cpn10 - or groES in bacteria) exists as a ring-shaped oligomer of between six to eight identical subunits, while the 60 kDa chaperonin (cpn60 - or groEL in bacteria) forms a structure comprising 2 stacked rings, each ring containing 7 identical subunits [PUBMED:2897629]. These ring structures assemble by self-stimulation in the presence of Mg2+-ATP. The central cavity of the cylindrical cpn60 tetradecamer provides as isolated environment for protein folding whilst cpn-10 binds to cpn-60 and synchronizes the release of the folded protein in an Mg2+-ATP dependent manner [PUBMED:1350777]. The binding of cpn10 to cpn60 inhibits the weak ATPase activity of cpn60.

Escherichia coli GroES has also been shown to bind ATP cooperatively, and with an affinity comparable to that of GroEL [PUBMED:7901771]. Each GroEL subunit contains three structurally distinct domains: an apical, an intermediate and an equatorial domain. The apical domain contains the binding sites for both GroES and the unfolded protein substrate. The equatorial domain contains the ATP-binding site and most of the oligomeric contacts. The intermediate domain links the apical and equatorial domains and transfers allosteric information between them. The GroEL oligomer is a tetradecamer, cylindrically shaped, that is organised in two heptameric rings stacked back to back. Each GroEL ring contains a central cavity, known as the `Anfinsen cage', that provides an isolated environment for protein folding. The identical 10 kDa subunits of GroES form a dome-like heptameric oligomer in solution. ATP binding to GroES may be important in charging the seven subunits of the interacting GroEL ring with ATP, to facilitate cooperative ATP binding and hydrolysis for substrate protein release.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan GroES (CL0296), which has the following description:

This superfamily includes the GroES protein as well as the N-terminal GroES-like domain from Alcohol dehydrogenase.

The clan contains the following 2 members:

ADH_N Cpn10

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(48)
Full
(6057)
Representative proteomes NCBI
(3685)
Meta
(2838)
RP15
(540)
RP35
(1020)
RP55
(1322)
RP75
(1577)
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(48)
Full
(6057)
Representative proteomes NCBI
(3685)
Meta
(2838)
RP15
(540)
RP35
(1020)
RP55
(1322)
RP75
(1577)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(48)
Full
(6057)
Representative proteomes NCBI
(3685)
Meta
(2838)
RP15
(540)
RP35
(1020)
RP55
(1322)
RP75
(1577)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: cpn10;
Type: Domain
Author: Sonnhammer ELL, Finn RD
Number in seed: 48
Number in full: 6057
Average length of the domain: 90.70 aa
Average identity of full alignment: 44 %
Average coverage of the sequence by the domain: 92.00 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.1 21.1
Trusted cut-off 21.1 21.2
Noise cut-off 21.0 21.0
Model length: 93
Family (HMM) version: 16
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

Cpn60_TCP1 Cpn10

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Cpn10 domain has been found. There are 114 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...