Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
544  structures 892  species 10  interactions 3781  sequences 216  architectures

Family: EF-hand_1 (PF00036)

Summary: EF hand

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "EF hand". More...

EF hand Edit Wikipedia article

EF hand
PDB 1osa EBI.jpg
Structure of the recombinant Paramecium tetraurelia calmodulin.[1]
Identifiers
Symbol efhand
Pfam PF00036
InterPro IPR002048
PROSITE PDOC00018
SCOP 1osa
SUPERFAMILY 1osa
OPM protein 1djx

The EF hand is a helix-loop-helix structural domain or motif found in a large family of calcium-binding proteins.

The EF-hand motif contains a helix-loop-helix topology, much like the spread thumb and forefinger of the human hand, in which the Ca2+ ions are coordinated by ligands within the loop. The motif takes its name from traditional nomenclature used in describing the protein parvalbumin, which contains three such motifs and is probably involved in muscle relaxation via its calcium-binding activity.

The EF-hand consists of two alpha helices linked by a short loop region (usually about 12 amino acids) that usually binds calcium ions. EF-hands also appear in each structural domain of the signaling protein calmodulin and in the muscle protein troponin-C.


Calcium ion binding site

EF-hand Ca2+ binding motif.
  • The calcium ion is coordinated in a pentagonal bipyramidal configuration. The six residues involved in the binding are in positions 1, 3, 5, 7, 9 and 12; these residues are denoted by X, Y, Z, -Y, -X and -Z. The invariant Glu or Asp at position 12 provides two oxygens for liganding Ca (bidentate ligand).
  • The calcium ion is bound by both protein backbone atoms and by amino acid side chains, specifically those of the acidic amino acid residues aspartate and glutamate. These residues are negatively charged and will make a charge-interaction with the positively charged calcium ion. The EF hand motif was among the first structural motifs whose sequence requirements were analyzed in detail. Five of the loop residues bind calcium and thus have a strong preference for oxygen-containing side chains, especially aspartate and glutamate. The sixth residue in the loop is necessarily glycine due to the conformational requirements of the backbone. The remaining residues are typically hydrophobic and form a hydrophobic core that binds and stabilizes the two helices.
  • Upon binding to Ca2+, this motif may undergo conformational changes that enable Ca2+-regulated functions as seen in Ca2+ effectors such as calmodulin (CaM) and troponin C (TnC) and Ca2+ buffers such as calreticulin and calbindin D9k. While the majority of the known EF-hand Calcium-binding proteins (CaBPs) contain paired EF-hand motifs, CaBP’s with single EF hands have also been discovered in both bacteria and eukaryotes. In addition, "EF-hand-like motifs" have been found in a number of bacteria. Although the coordination properties remain similar with the canonical 29-residue helix-loop-helix EF-hand motif, the EF-hand-like motifs differ from EF-hands in that they contain deviations in the secondary structure of the flanking sequences and/or variation in the length of the Ca2+-coordinating loop.

Prediction

Summary of motif signatures used for prediction of EF-hands.
  • Pattern (motif signature) search is one of the most straightforward ways to predict continuous EF-hand Ca2+-binding sites in proteins. Based on the sequence alignment results of canonical EF-hand motifs, especially the conserved side chains directly involved in Ca2+ binding, a pattern PS00018 has been generated to predict canonical EF-hand sites. A prediction servers may be found in the external links section.

Classification

  • Since the delineation of the EF-hand motif in 1973, the family of EF-hand proteins has expanded to include at least 66 subfamilies thus far. EF-hand motifs are divided into two major groups:
    • Canonical EF-hands as seen in calmodulin (CaM) and the prokaryotic CaM-like protein calerythrin. The 12-residue canonical EF-hand loop binds Ca2+ mainly via sidechain carboxylates or carbonyls (loop sequence positions 1, 3, 5, 12). The residue at the –X axis coordinates the Ca2+ ion through a bridged water molecule. The EF-hand loop has a bidentate ligand (Glu or Asp) at axis –Z.
    • Pseudo EF-hands exclusively found in the N-termini of S100 and S100-like proteins. The 14-residue pseudo EF-hand loop chelates Ca2+ primarily via backbone carbonyls (positions 1, 4, 6, 9).

Additional points:

Phylogenetic tree of the EF-hand protein family.
  • EF-hand-like proteins with diversified flanking structural elements around the Ca2+-binding loop have been reported in bacteria and viruses. These prokaryotic EF-hand-like proteins are widely implicated in Ca2+ signaling and homeostasis in bacteria. They contain flexible lengths of Ca2+-binding loops that differ from the EF-hand motifs. However, their coordination properties resemble classical EF-hand motifs.
    • For example, the semi-continuous Ca2+-binding site in D-galactose-binding protein (GBP) contains a nine-residue loop. The Ca2+ ion is coordinated by seven protein oxygen atoms, five of which are from the loop mimicking the canonical EF-loop whereas the other two are from the carboxylate group of a distant Glu.
    • Another example is a novel domain named Excalibur (extracellular Ca2+-binding region) isolated from Bacillus subtilis. This domain has a conserved 10-residue Ca2+-binding loop strikingly similar to the canonical 12-residue EF-hand loop.
    • The diversity of the structure of the flanking region is illustrated by the discovery of EF-hand-like domains in bacterial proteins. For example, a helix-loop-strand instead of the helix-loop-helix structure is in periplasmic galactose-binding protein (Salmonella typhimurium, PDB 1gcg) or alginate-binding protein (Sphingomonas sp., 1kwh); the entering helix is missing in protective antigen (Bacillus anthracis, 1acc) or dockerin (Clostridium thermocellum, 1daq).
  • Among all the structures reported to date, the majority of EF-hand motifs are paired either between two canonical or one pseudo and one canonical motifs. For proteins with odd numbers of EF-hands, such as the penta-EF-hand calpain, EF-hand motifs were coupled through homo- or hetero-dimerization. The recently-identified EF-hand containing ER Ca2+ sensor protein, stromal interaction molecule 1 and 2 (STIM1, STIM2), has been shown to contain a Ca2+-binding canonical EF-hand motif that pairs with an immediate, downstream atypical "hidden" non-Ca2+-binding EF-hand. Single EF-hand motifs can serve as protein-docking modules: for example, the single EF hand in the NKD1 and NKD2 proteins binds the Dishevelled (DVL1, DVL2, DVL3) proteins.
  • Functionally, the EF-hands can be divided into two classes: 1) signaling proteins and 2) buffering/transport proteins. The first group is the largest and includes the most well-known members of the family such as calmodulin, troponin C and S100B. These proteins typically undergo a calcium-dependent conformational change which opens a target binding site. The latter group is represented by calbindin D9k and do not undergo calcium dependent conformational changes.

Subfamilies

Examples

Aequorin

Aequorin is a calcium binding protein (CaBP) isolated from the coelenterate Aequorea victoria. Aequorin belongs to the EF-hand family of CaBPs, with EF-hand loops that are closely related to CaBPs in mammals. In addition, aequorin has been used for years as an indicator of Ca2+ and has been shown to be safe and well tolerated by cells. Aequorin is made up of two components – the calcium binding component apoaequorin (AQ) and the chemiluminescent molecule coelenterazine. The AQ portion of this protein contains the EF-hand calcium binding domains.[2]

Human proteins

Humans proteins containing this domain include:

See also

  • Another distinct calcium-binding motif composed of alpha helices is the dockerin domain.

References

  1. ^ Ban C, Ramakrishnan B, Ling KY, Kung C, Sundaralingam M (January 1994). "Structure of the recombinant Paramecium tetraurelia calmodulin at 1.68 A resolution". Acta Crystallogr. D Biol. Crystallogr. 50 (Pt 1): 50–63. doi:10.1107/S0907444993007991. PMID 15299476. 
  2. ^ Detert JA, Adams EL, Lescher JD, Lyons JA, Moyer JR (2013). "Pretreatment with Apoaequorin Protects Hippocampal CA1 Neurons from Oxygen-Glucose Deprivation". PLoS ONE 8 (11): e79002. doi:10.1371/journal.pone.0079002. PMC 3823939. PMID 24244400. 

Further reading

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

EF hand Provide feedback

The EF-hands can be divided into two classes: signaling proteins and buffering/transport proteins. The first group is the largest and includes the most well-known members of the family such as calmodulin, troponin C and S100B. These proteins typically undergo a calcium-dependent conformational change which opens a target binding site. The latter group is represented by calbindin D9k and do not undergo calcium dependent conformational changes.

Literature references

  1. Nakayama S, Moncrief ND, Kretsinger RH; , J Mol Evol 1992;34:416-448.: Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. PUBMED:1602495 EPMC:1602495

  2. Hogue CW, MacManus JP, Banville D, Szabo AG; , J Biol Chem 1992;267:13340-13347.: Comparison of terbium (III) luminescence enhancement in mutants of EF hand calcium binding proteins. PUBMED:1618836 EPMC:1618836

  3. Bairoch A, Cox JA; , FEBS Lett 1990;269:454-456.: EF-hand motifs in inositol phospholipid-specific phospholipase C. PUBMED:2401372 EPMC:2401372

  4. Finn BE, Forsen S; , Structure 1995;3:7-11.: The evolving model of calmodulin structure, function and activation. PUBMED:7743133 EPMC:7743133


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR018248

Many calcium-binding proteins belong to the same evolutionary family and share a type of calcium-binding domain known as the EF-hand. This type of domain consists of a twelve residue loop flanked on both sides by a twelve residue alpha-helical domain. In an EF-hand loop the calcium ion is coordinated in a pentagonal bipyramidal configuration. The six residues involved in the binding are in positions 1, 3, 5, 7, 9 and 12; these residues are denoted by X, Y, Z, -Y, -X and -Z. The invariant Glu or Asp at position 12 provides two oxygens for liganding Ca (bidentate ligand).

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan EF_hand (CL0220), which has the following description:

The EF hand is a calcium binding domain found in a wide variety of proteins [1].

The clan contains the following 16 members:

Caleosin Dockerin_1 EF-hand_1 EF-hand_10 EF-hand_2 EF-hand_3 EF-hand_4 EF-hand_5 EF-hand_6 EF-hand_7 EF-hand_8 EF-hand_9 EF-hand_like EFhand_Ca_insen S_100 SPARC_Ca_bdg

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(893)
Full
(3781)
Representative proteomes NCBI
(18263)
Meta
(638)
RP15
(649)
RP35
(934)
RP55
(1356)
RP75
(1838)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(893)
Full
(3781)
Representative proteomes NCBI
(18263)
Meta
(638)
RP15
(649)
RP35
(934)
RP55
(1356)
RP75
(1838)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(893)
Full
(3781)
Representative proteomes NCBI
(18263)
Meta
(638)
RP15
(649)
RP35
(934)
RP55
(1356)
RP75
(1838)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: efhand; EF_hand_1;
Type: Domain
Author: Eddy SR
Number in seed: 893
Number in full: 3781
Average length of the domain: 28.50 aa
Average identity of full alignment: 33 %
Average coverage of the sequence by the domain: 12.77 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.4 25.4
Trusted cut-off 25.4 25.4
Noise cut-off 25.3 25.3
Model length: 29
Family (HMM) version: 27
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 10 interactions for this family. More...

Myosin_N Metallophos EFhand_Ca_insen S_100 Troponin Myosin_head IQ Shal-type EF-hand_1 FKBP_C

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the EF-hand_1 domain has been found. There are 544 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...