Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
226  structures 929  species 1  interaction 1432  sequences 20  architectures

Family: FBPase (PF00316)

Summary: Fructose-1-6-bisphosphatase, N-terminal domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Fructose 1,6-bisphosphatase". More...

Fructose 1,6-bisphosphatase Edit Wikipedia article

fructose-1,6-bisphosphatase 1
Fructose-1.6-bisphosphatase-pdb-3FBP.png
Fructose-1,6-bisphosphatase and its fructose 2,6-bisphosphate complex. Rendered from PDB 3FBP.
Identifiers
Symbol FBP1
Alt. symbols FBP
Entrez 2203
HUGO 3606
OMIM 229700
RefSeq NM_000507
UniProt P09467
Other data
EC number 3.1.3.11
Locus Chr. 9 q22.3
Fructose-1-6-bisphosphatase
PDB 1bk4 EBI.jpg
crystal structure of rabbit liver fructose-1,6-bisphosphatase at 2.3 angstrom resolution
Identifiers
Symbol FBPase
Pfam PF00316
Pfam clan CL0171
InterPro IPR000146
PROSITE PDOC00114
SCOP 1frp
SUPERFAMILY 1frp
Firmicute fructose-1,6-bisphosphatase
Identifiers
Symbol FBPase_2
Pfam PF06874
Pfam clan CL0163
InterPro IPR009164
Fructose-1,6-bisphosphatase
PDB 1umg EBI.jpg
crystal structure of fructose-1,6-bisphosphatase
Identifiers
Symbol FBPase_3
Pfam PF01950
InterPro IPR002803
SCOP 1umg
SUPERFAMILY 1umg

Fructose bisphosphatase (EC 3.1.3.11) is an enzyme that converts fructose-1,6-bisphosphate to fructose 6-phosphate in gluconeogenesis and the Calvin cycle which are both anabolic pathways. Fructose bisphosphatase catalyses the reverse of the reaction which is catalysed by phosphofructokinase in glycolysis.[1][2] These enzymes only catalyse the reaction in one direction each, and are regulated by metabolites such as fructose 2,6-bisphosphate so that high activity of one of the two enzymes is accompanied by low activity of the other. More specifically, fructose 2,6-bisphosphate allosterically inhibits fructose 1,6-bisphosphatase, but activates phosphofructokinase-I. Fructose 1,6-bisphosphatase is involved in many different metabolic pathways and found in most organisms. FBPase requires metal ions for catalysis (Mg2+ and Mn2+ being preferred) and the enzyme is potently inhibited by Li+.

Structure

The fold of fructose-1,6-bisphosphatase from pig was noted to be identical to that of inositol-1-phosphatase (IMPase).[3] Inositol polyphosphate 1-phosphatase (IPPase), IMPase and FBPase share a sequence motif (Asp-Pro-Ile/Leu-Asp-Gly/Ser-Thr/Ser) which has been shown to bind metal ions and participate in catalysis. This motif is also found in the distantly-related fungal, bacterial and yeast IMPase homologues. It has been suggested that these proteins define an ancient structurally conserved family involved in diverse metabolic pathways, including inositol signalling, gluconeogenesis, sulphate assimilation and possibly quinone metabolism.[4]

Species distribution

Three different groups of FBPases have been identified in eukaryotes and bacteria (FBPase I-III).[5] None of these groups have been found in archaea so far, though a new group of FBPases (FBPase IV) which also show inositol monophosphatase activity has recently been identified in archaea.[6]

A new group of FBPases (FBPase V) is found in thermophilic archaea and the hyperthermophilic bacterium Aquifex aeolicus.[7] The characterised members of this group show strict substrate specificity for FBP and are suggested to be the true FBPase in these organisms.[7][8] A structural study suggests that FBPase V has a novel fold for a sugar phosphatase, forming a four-layer alpha-beta-beta-alpha sandwich, unlike the more usual five-layered alpha-beta-alpha-beta-alpha arrangement.[8] The arrangement of the catalytic side chains and metal ligands was found to be consistent with the three-metal ion assisted catalysis mechanism proposed for other FBPases.

The fructose 1,6-bisphosphatases found within the Firmicutes (low GC Gram-positive bacteria) do not show any significant sequence similarity to the enzymes from other organisms. The Bacillus subtilis enzyme is inhibited by AMP, though this can be overcome by phosphoenolpyruvate, and is dependent on Mn(2+).[9][10] Mutants lacking this enzyme are apparently still able to grow on gluconeogenic growth substrates such as malate and glycerol.

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
|{{{bSize}}}px|alt=Glycolysis and Gluconeogenesis edit]]
Glycolysis and Gluconeogenesis edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534". 

Hibernation and Cold Adaptation

Fructose 1,6-bisphosphatase also plays a key role in hibernation, which requires strict regulation of metabolic processes to facilitate entry into hibernation, maintenance, arousal from hibernation, and adjustments to allow long-term dormancy.[11][12][13] During hibernation, an animal’s metabolic rate may decrease to around 1/25 of its euthermic resting metabolic rate.[12][13][14] Studies have found that FBPase is modified in hibernating animals to be much more temperature sensitive than it is in euthermic animals.[11][13][14] In one study, FBPase in the liver of a hibernating bat showed a 75% decrease in Km for its substrate FBP at 5°C than at 37°C.[11] However, in a euthermic bat this decrease was only 25%, demonstrating the difference in temperature sensitivity between hibernating and euthermic bats.[11] When sensitivity to allosteric inhibitors such as AMP, ADP, inorganic phosphate, and fructose-2,6-bisphosphate were examined, FBPase from hibernating bats was much more sensitive to inhibitors at low temperature than in euthermic bats.[11][15][16]

During hibernation, respiration also dramatically decreases, resulting in conditions of relative anoxia in the tissues. Anoxic conditions inhibit gluconeogenesis, and therefore FBPase, while stimulating glycolysis, and this is another reason for reduced FBPase activity in hibernating animals.[17] The substrate of FBPase, fructose 1,6-bisphosphate, has also been shown to activate pyruvate kinase in glycolysis, linking increased glycolysis to decreased gluconeogenesis when FBPase activity is decreased during hibernation.[13]

In addition to hibernation, there is evidence that FBPase activity varies significantly between warm and cold seasons even for animals that do not hibernate.[18] In rabbits exposed to cold temperatures, FBPase activity decreased throughout the duration of cold exposure, increasing when temperatures became warmer again.[18] The mechanism of this FBPase inhibition is thought to be digestion of FBPase by lysosomal proteases, which are released at higher levels during colder periods.[18] Inhibition of FBPase through proteolytic digestion decreases gluconeogenesis relative to glycolysis during cold periods, similar to hibernation.[18]

Fructose 1,6-bisphosphate aldolase is another temperature dependent enzyme that plays an important role in the regulation of glycolysis and gluconeogenesis during hibernation.[14] Its main role is in glycolysis instead of gluconeogenesis, but its substrate is the same as FBPase’s, so its activity affects that of FBPase in gluconeogenesis. Aldolase shows similar changes in activity to FBPase at colder temperatures, such as an upward shift in optimum pH at colder temperatures. This adaptation allows enzymes such as FBPase and fructose-1,6-bisphosphate aldolase to track intracellular pH changes in hibernating animals and match their activity ranges to these shifts.[14] Aldolase also complements the activity of FBPase in anoxic conditions (discussed above) by increasing glycolytic output while FBPase inhibition decreases gluconeogenesis activity.[19]

Diabetes

Fructose 1,6-bisphosphatase is also a key player in treating type 2 diabetes. In this disease, hyperglycemia causes many serious problems, and treatments often focus on lowering blood sugar levels.[20][21][22] Gluconeogenesis in the liver is a major cause of glucose overproduction in these patients, and so inhibition of gluconeogenesis is a reasonable way to treat type 2 diabetes. FBPase is a good enzyme to target in the gluconeogenesis pathway because it is rate-limiting and controls the incorporation of all three-carbon substrates into glucose but is not involved in glycogen breakdown and is removed from mitochondrial steps in the pathway.[20][21][22] This means that altering its activity can have a large effect on gluconeogenesis while reducing the risk of hypoglycemia and other potential side effects from altering other enzymes in gluconeogenesis.[20][21] In 1993, two East Asian plants that were known to have hypoglycemic effects were tested on rats. Both resulted in lowered levels of FBPase and therefore reduced gluconeogenesis and lowered blood sugar.[23] Two years later, a drug called Troglitazone (shown below) that also targets FBPase was successfully tested on mice and resulted in suppressed gluconeogenesis.[24] More recently, drugs been developed that mimic the inhibitory activity of AMP (shown below) on FBPase, though the first such drug caused dangerous side effects.[20][22] Efforts were made to mimic the allosteric inhibitory effects of AMP while making the drug as structurally different from it as possible.[25][22] Second-generation FBPase inhibitors have now been developed and have had good results in clinical trials with non-human mammals and now humans.[20] These second-generation FBPase inhibitors could soon be good candidates for treating type 2 diabetes.

AMP
Troglitazone


See also

References

  1. ^ Marcus F, Harrsch PB (May 1990). "Amino acid sequence of spinach chloroplast fructose-1,6-bisphosphatase". Archives of Biochemistry and Biophysics 279 (1): 151–7. doi:10.1016/0003-9861(90)90475-E. PMID 2159755. 
  2. ^ Marcus F, Gontero B, Harrsch PB, Rittenhouse J (Mar 1986). "Amino acid sequence homology among fructose-1,6-bisphosphatases". Biochemical and Biophysical Research Communications 135 (2): 374–81. doi:10.1016/0006-291X(86)90005-7. PMID 3008716. 
  3. ^ Zhang Y, Liang JY, Lipscomb WN (Feb 1993). "Structural similarities between fructose-1,6-bisphosphatase and inositol monophosphatase". Biochemical and Biophysical Research Communications 190 (3): 1080–3. doi:10.1006/bbrc.1993.1159. PMID 8382485. 
  4. ^ York JD, Ponder JW, Majerus PW (May 1995). "Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure". Proceedings of the National Academy of Sciences of the United States of America 92 (11): 5149–53. doi:10.1073/pnas.92.11.5149. PMC 41866. PMID 7761465. 
  5. ^ Donahue JL, Bownas JL, Niehaus WG, Larson TJ (Oct 2000). "Purification and characterization of glpX-encoded fructose 1, 6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli". Journal of Bacteriology 182 (19): 5624–7. doi:10.1128/jb.182.19.5624-5627.2000. PMC 111013. PMID 10986273. 
  6. ^ Stec B, Yang H, Johnson KA, Chen L, Roberts MF (Nov 2000). "MJ0109 is an enzyme that is both an inositol monophosphatase and the 'missing' archaeal fructose-1,6-bisphosphatase". Nature Structural Biology 7 (11): 1046–50. doi:10.1038/80968. PMID 11062561. 
  7. ^ a b Rashid N, Imanaka H, Kanai T, Fukui T, Atomi H, Imanaka T (Aug 2002). "A novel candidate for the true fructose-1,6-bisphosphatase in archaea". The Journal of Biological Chemistry 277 (34): 30649–55. doi:10.1074/jbc.M202868200. PMID 12065581. 
  8. ^ a b Nishimasu H, Fushinobu S, Shoun H, Wakagi T (Jun 2004). "The first crystal structure of the novel class of fructose-1,6-bisphosphatase present in thermophilic archaea". Structure 12 (6): 949–59. doi:10.1016/j.str.2004.03.026. PMID 15274916. 
  9. ^ Fujita Y, Freese E (Jun 1979). "Purification and properties of fructose-1,6-bisphosphatase of Bacillus subtilis". The Journal of Biological Chemistry 254 (12): 5340–9. PMID 221467. 
  10. ^ Fujita Y, Yoshida K, Miwa Y, Yanai N, Nagakawa E, Kasahara Y (Aug 1998). "Identification and expression of the Bacillus subtilis fructose-1, 6-bisphosphatase gene (fbp)". Journal of Bacteriology 180 (16): 4309–13. PMC 107433. PMID 9696785. 
  11. ^ a b c d e Storey, Kenneth B. “Metabolic regulation in mammalian hibernation: enzyme and protein adaptations.” Comparative Biochemistry and Physiology 118A.4 (1997). 1115-1124. Web.
  12. ^ a b Heldmaier, Gerhard, Sylvia Ortmann, and Ralf Elvert. “Natural hypometabolism during hibernation and daily torpor in mammals.” Respiratory Physiology & Neurobiology 141 (2004). 317-329. Web.
  13. ^ a b c d Brooks, Stephen P.J. and Kenneth B. Storey. “Mechanisms of glycolytic control during hibernation in the ground squirrel Spermophilus lateralis.” Journal of Comparative Physiology B 162 (1992). 23-28. Web.
  14. ^ a b c d MacDonald, Justin A. and Kenneth B. Storey. “Purification and characterization of fructose bisphosphate aldolase from the ground squirrel, Spermophilus lateralis: enzyme role in mammalian hibernation.” Archives of Biochemistry and Biophysics 408.2 (2002). 279-285. Web.
  15. ^ Ekdahl, Kristina Nilsson and Pia Ekman. “The effect of fructose 1,6-bisphosphate and AMP on the activity of phosphorylated and unphosphorylated fructose-1,6-bisphosphatase from rat liver.” Federation of European Biological Societies Letters 167.2 (1984). 203-209. Web.
  16. ^ Taketa, Kazuhisa, and Burton M. Pogell. "Allosteric Inhibition of Rat Liver Fructose 1,6-Diphosphatase by Adenosine 5’-Monophosphate*." Journal of Biological Chemistry 240.2 (1965): 651-62. Print.
  17. ^ Underwood, A.H. and E.A. Newsholme. “Control of glycolysis and gluconeogenesis in rat kidney cortex slices.” Biochemistry Journal 104 (1967). 300-305. Web.
  18. ^ a b c d Fischer, E.H., E.G. Krebs, H. Neurath, and E.R. Stadtman. “Metabolic interconversion of enzymes.” Third International Symposium held in Seattle. 1973. Web.
  19. ^ Dawson, Neal J., Kyle K. Biggar, and Kenneth B. Storey. “Characterization of fructose-1,6-bisphosphate aldolase during anoxia in the tolerant turtle, Trachemys scripta elegans: an assessment of enzyme activity, expression, and structure.” Institute of Biochemistry & Department of Biology, Carleton University, Ottowa, Ontario, Canada. 8.7 (2013). Web.
  20. ^ a b c d e Dang, Qun, Paul D. Van Poelje, and Mark D. Erion. “The discovery and development of MB07803, a second-generation fructose-1,6-bisphosphatase inhibitor with improved pharmokinetic properties, as a potential treatment of type 2 diabetes.” RSC Drug Discoveries Series No 27. 2012. 306-323.Web.
  21. ^ a b c Hofmann, F.B. and Munchen. “Handbook of experimental pharmacology: Diabetes – perspectives in drug therapy.” Springer-Verlag Berlin Heidelverg 203 (2011). Web.
  22. ^ a b c d Poelje, P. D. Van, S. C. Potter, V. C. Chandramouli, et al. "Inhibition of Fructose 1,6-Bisphosphatase Reduces Excessive Endogenous Glucose Production and Attenuates Hyperglycemia in Zucker Diabetic Fatty Rats." Diabetes 55.6 (2006): 1747-754. Web.
  23. ^ Shibib, B. A., L. A. Khan, and R. Rahman. "Hypoglycaemic Activity of Coccinia Indica and Momordica Charantia in Diabetic Rats: Depression of the Hepatic Gluconeogenic Enzymes Glucose-6-phosphatase and Fructose-1,6-bisphosphatase and Elevation of Both Liver and Red-cell Shunt Enzyme Glucose-6-phosphate Dehydrogenase." Biochem. J. Biochemical Journal 292.1 (1993): 267-70. Web.
  24. ^ Fujiwara, Toshihiko, Akira Okuno, Shinji Yoshioka, et al. "Suppression of Hepatic Gluconeogenesis in Long-term Troglitazone Treated Diabetic KK and Mice." Metabolism 44.4 (1995): 486-90. Web.
  25. ^ Erion, M. D., P. D. Van Poelje, Q. Dang, et al. "MB06322 (CS-917): A Potent and Selective Inhibitor of Fructose 1,6-bisphosphatase for Controlling Gluconeogenesis in Type 2 Diabetes." Proceedings of the National Academy of Sciences 102.22 (2005): 7970-975. Web.

Further reading

  • Berg, Jeremy Mark; John L. Tymoczko; Lubert Stryer (2002). "Glycolysis and Gluconeogenesis". In Susan Moran (ed.). Biochemistry (5th ed.). 41 Madison Avenue, New York, New York: W. H. Freeman and Company. ISBN 0-7167-3051-0. 

External links

This article incorporates text from the public domain Pfam and InterPro IPR000146

This article incorporates text from the public domain Pfam and InterPro IPR009164

This article incorporates text from the public domain Pfam and InterPro IPR002803

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Fructose-1-6-bisphosphatase, N-terminal domain Provide feedback

This family represents the N-terminus of this protein family.

Literature references

  1. Weeks CM, Roszak AW, Erman M, Kaiser R, Jornvall H, Ghosh D; , Acta Crystallogr D Biol Crystallogr 1999;55:93-102.: Structure of rabbit liver fructose 1,6-bisphosphatase at 2.3 A resolution. PUBMED:10089399 EPMC:10089399


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000146

This entry represents the fructose-1,6-bisphosphatase (FBPase) class 1 family. FBPase is a critical regulatory enzyme in gluconeogenesis that catalyses the removal of 1-phosphate from fructose 1,6-bis-phosphate to form fructose 6-phosphate [PUBMED:2159755, PUBMED:3008716]. It is involved in many different metabolic pathways and found in most organisms. FBPase requires metal ions for catalysis (Mg2+ and Mn2+ being preferred) and the enzyme is potently inhibited by Li+. The fold of fructose-1,6-bisphosphatase was noted to be identical to that of inositol-1-phosphatase (IMPase) [PUBMED:8382485]. Inositol polyphosphate 1-phosphatase (IPPase), IMPase and FBPase share a sequence motif (Asp-Pro-Ile/Leu-Asp-Gly/Ser-Thr/Ser) which has been shown to bind metal ions and participate in catalysis. This motif is also found in the distantly-related fungal, bacterial and yeast IMPase homologues. It has been suggested that these proteins define an ancient structurally conserved family involved in diverse metabolic pathways, including inositol signalling, gluconeogenesis, sulphate assimilation and possibly quinone metabolism [PUBMED:7761465].

This entry also includes sedoheptulose-1,7-bisphosphatase, which is a member of the FBPase class 1 family.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Phospoesterase (CL0171), which has the following description:

Members of this clan show metal-dependent / lithium sensitive phosphomonoesterase activity. The clan includes inositol polyphosphate 1 phosphatase and fructose 1,6-bisphosphatase [1].

The clan contains the following 3 members:

FBPase FBPase_glpX Inositol_P

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(9)
Full
(1432)
Representative proteomes UniProt
(5851)
NCBI
(6507)
Meta
(354)
RP15
(385)
RP35
(894)
RP55
(1367)
RP75
(1760)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(9)
Full
(1432)
Representative proteomes UniProt
(5851)
NCBI
(6507)
Meta
(354)
RP15
(385)
RP35
(894)
RP55
(1367)
RP75
(1760)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(9)
Full
(1432)
Representative proteomes UniProt
(5851)
NCBI
(6507)
Meta
(354)
RP15
(385)
RP35
(894)
RP55
(1367)
RP75
(1760)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Domain
Author: Finn RD, Griffiths-Jones SR
Number in seed: 9
Number in full: 1432
Average length of the domain: 178.90 aa
Average identity of full alignment: 39 %
Average coverage of the sequence by the domain: 52.78 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 11927849 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 27.0 27.0
Trusted cut-off 27.1 27.1
Noise cut-off 26.9 26.8
Model length: 189
Family (HMM) version: 17
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

FBPase

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the FBPase domain has been found. There are 226 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...