Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
1971  structures 2886  species 5  interactions 6000  sequences 34  architectures

Family: Globin (PF00042)

Summary: Globin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Globin". More...

Globin Edit Wikipedia article

Globin family
PDB 1hba EBI.jpg
Structure of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site.[1]
Identifiers
Symbol Globin
Pfam PF00042
Pfam clan CL0090
InterPro IPR000971
PROSITE PS01033
SCOP 1hba
SUPERFAMILY 1hba
CDD cd01067
Bac_globin
PDB 1s56 EBI.jpg
crystal structure of "truncated" hemoglobin n (hbn) from mycobacterium tuberculosis, soaked with xe atoms
Identifiers
Symbol Bac_globin
Pfam PF01152
Pfam clan CL0090
InterPro IPR001486
PROSITE PDOC00933
SCOP 1dlw
SUPERFAMILY 1dlw

The globins are a family of globular proteins, which are thought to share a common ancestor. These proteins all incorporate the globin fold, a series of eight alpha helical segments. Two prominent members of this family include myoglobin and hemoglobin, which both bind the heme (also haem) prosthetic group. Both of these proteins are reversible oxygen binders.

Globins are haem-containing proteins involved in binding and/or transporting oxygen. They belong to a very large and well studied family that is widely distributed in many organisms.[2]

Types[edit]

Globins evolved from a common ancestor and can be divided into three groups: single-domain globins, and two types of chimeric globins, flavohaemoglobins and globin-coupled sensors. Bacteria have all three types of globins, while archaea lack flavohaemoglobins, and eukaryotes lack globin-coupled sensors.[3] Several functionally different haemoglobins can coexist in the same species.

Eight globins are known to occur in vertebrates: androglobin, cytoglobin, globin E, globin X, globin Y, haemoglobin, myoglobin and neuroglobin.

Subfamilies[edit]

Examples[edit]

Human genes encoding globin proteins include:

The globins include:

  • Neuroglobin: a myoglobin-like haemprotein expressed in vertebrate brain and retina, where it is involved in neuroprotection from damage due to hypoxia or ischemia.[4] Neuroglobin belongs to a branch of the globin family that diverged early in evolution.
  • Flavohaemoglobins (FHb): chimeric, with an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD/FAD-binding domain. FHb provides protection against nitric oxide via its C-terminal domain, which transfers electrons to haem in the globin.[7]
  • Globin E: a globin responsible for storing and delivering oxygen to the retina in birds[8]
  • Protoglobin: a single domain globin found in archaea that is related to the N-terminal domain of globin-coupled sensors.[11]
  • Truncated 2/2 globin: lack the first helix, giving them a 2-over-2 instead of the canonical 3-over-3 alpha-helical sandwich fold. Can be divided into three main groups (I, II and II) based on structural features.
  • HbN (or GlbN): a truncated haemoglobin-like protein that binds oxygen cooperatively with a very high affinity and a slow dissociation rate, which may exclude it from oxygen transport. It appears to be involved in bacterial nitric oxide detoxification and in nitrosative stress.[12]
  • Cyanoglobin (or GlbN): a truncated haemoprotein found in cyanobacteria that has high oxygen affinity, and which appears to serve as part of a terminal oxidase, rather than as a respiratory pigment.[13]
  • HbO (or GlbO): a truncated haemoglobin-like protein with a lower oxygen affinity than HbN. HbO associates with the bacterial cell membrane, where it significantly increases oxygen uptake over membranes lacking this protein. HbO appears to interact with a terminal oxidase, and could participate in an oxygen/electron-transfer process that facilitates oxygen transfer during aerobic metabolism.[14]
  • Glb3: a nuclear-encoded truncated haemoglobin from plants that appears more closely related to HbO than HbN. Glb3 from Arabidopsis thaliana (Mouse-ear cress) exhibits an unusual concentration-independent binding of oxygen and carbon dioxide.[15]

See also[edit]

References[edit]

  1. ^ Kavanaugh JS, Rogers PH, Case DA, Arnone A (April 1992). "High-resolution X-ray study of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site". Biochemistry 31 (16): 4111–21. doi:10.1021/bi00131a030. PMID 1567857. 
  2. ^ Vinogradov SN, Hoogewijs D, Bailly X, Mizuguchi K, Dewilde S, Moens L, Vanfleteren JR (August 2007). "A model of globin evolution". Gene 398 (1-2): 132–42. doi:10.1016/j.gene.2007.02.041. PMID 17540514. 
  3. ^ Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Gough J, Dewilde S, Moens L, Vanfleteren JR (2006). "A phylogenomic profile of globins". BMC Evol. Biol. 6: 31. doi:10.1186/1471-2148-6-31. PMC 1457004. PMID 16600051. 
  4. ^ Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (September 2003). "Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity". Structure 11 (9): 1087–95. doi:10.1016/S0969-2126(03)00166-7. PMID 12962627. 
  5. ^ Fago A, Hundahl C, Malte H, Weber RE (2004). "Functional properties of neuroglobin and cytoglobin. Insights into the ancestral physiological roles of globins". IUBMB Life 56 (11-12): 689–96. doi:10.1080/15216540500037299. PMID 15804833. 
  6. ^ Royer WE, Omartian MN, Knapp JE (January 2007). "Low resolution crystal structure of Arenicola erythrocruorin: influence of coiled coils on the architecture of a megadalton respiratory protein". J. Mol. Biol. 365 (1): 226–36. doi:10.1016/j.jmb.2006.10.016. PMC 1847385. PMID 17084861. 
  7. ^ Mukai M, Mills CE, Poole RK, Yeh SR (March 2001). "Flavohemoglobin, a globin with a peroxidase-like catalytic site". J. Biol. Chem. 276 (10): 7272–7. doi:10.1074/jbc.M009280200. PMID 11092893. 
  8. ^ Blank M, Kiger L, Thielebein A, Gerlach F, Hankeln T, Marden MC, Burmeister T (2011). "Oxygen supply from the bird's eye perspective: Globin E is a respiratory protein in the chicken retina". J. Biol. Chem. 286 (30): 26507–15. doi:10.1074/jbc.M111.224634. PMC 3143615. PMID 21622558. 
  9. ^ Hou S, Freitas T, Larsen RW, Piatibratov M, Sivozhelezov V, Yamamoto A, Meleshkevitch EA, Zimmer M, Ordal GW, Alam M (July 2001). "Globin-coupled sensors: a class of heme-containing sensors in Archaea and Bacteria". Proc. Natl. Acad. Sci. U.S.A. 98 (16): 9353–8. doi:10.1073/pnas.161185598. PMC 55424. PMID 11481493. 
  10. ^ Freitas TA, Saito JA, Hou S, Alam M (January 2005). "Globin-coupled sensors, protoglobins, and the last universal common ancestor". J. Inorg. Biochem. 99 (1): 23–33. doi:10.1016/j.jinorgbio.2004.10.024. PMID 15598488. 
  11. ^ Freitas TA, Hou S, Dioum EM, Saito JA, Newhouse J, Gonzalez G, Gilles-Gonzalez MA, Alam M (April 2004). "Ancestral hemoglobins in Archaea". Proc. Natl. Acad. Sci. U.S.A. 101 (17): 6675–80. doi:10.1073/pnas.0308657101. PMC 404104. PMID 15096613. 
  12. ^ Lama A, Pawaria S, Dikshit KL (July 2006). "Oxygen binding and NO scavenging properties of truncated hemoglobin, HbN, of Mycobacterium smegmatis". FEBS Lett. 580 (17): 4031–41. doi:10.1016/j.febslet.2006.06.037. PMID 16814781. 
  13. ^ Yeh DC, Thorsteinsson MV, Bevan DR, Potts M, La Mar GN (February 2000). "Solution 1H NMR study of the heme cavity and folding topology of the abbreviated chain 118-residue globin from the cyanobacterium Nostoc commune". Biochemistry 39 (6): 1389–99. doi:10.1021/bi992081l. PMID 10684619. 
  14. ^ Pathania R, Navani NK, Rajamohan G, Dikshit KL (May 2002). "Mycobacterium tuberculosis hemoglobin HbO associates with membranes and stimulates cellular respiration of recombinant Escherichia coli". J. Biol. Chem. 277 (18): 15293–302. doi:10.1074/jbc.M111478200. PMID 11796724. 
  15. ^ Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennis ES (August 2001). "A hemoglobin from plants homologous to truncated hemoglobins of microorganisms". Proc. Natl. Acad. Sci. U.S.A. 98 (18): 10119–24. doi:10.1073/pnas.191349198. PMC 56925. PMID 11526234. 

This article incorporates text from the public domain Pfam and InterPro IPR001486

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Globin Provide feedback

No Pfam abstract.

Literature references

  1. Bashford D, Chothia C, Lesk AM; , J Mol Biol 1987;196:199-216.: Determinants of a protein fold. Unique features of the globin amino acid sequences. PUBMED:3656444 EPMC:3656444

  2. Neuwald AF, Liu JS, Lipman DJ, Lawrence CE; , Nucleic Acids Res 1997;25:1665-1677.: Extracting protein alignment models from the sequence database. PUBMED:9108146 EPMC:9108146

  3. Bogusz D, Appleby CA, Landsmann J, Dennis ES, Trinick MJ, Peacock WJ; , Nature 1988;331:178-180.: Functioning haemoglobin genes in non-nodulating plants. PUBMED:2448639 EPMC:2448639

  4. Kinniburgh AJ, Maquat LE, Schedl T, Rachmilewitz E, Ross J; , Nucleic Acids Res 1982;10:5421-5427.: mRNA-deficient beta o-thalassemia results from a single nucleotide deletion. PUBMED:6292840 EPMC:6292840


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000971

Globins are haem-containing proteins involved in binding and/or transporting oxygen. They belong to a very large and well studied family that is widely distributed in many organisms [PUBMED:17540514]. Globins have evolved from a common ancestor and can be divided into three groups: single-domain globins, and two types of chimeric globins, flavohaemoglobins and globin-coupled sensors. Bacteria have all three types of globins, while archaea lack flavohaemoglobins, and eukaryotes lack globin-coupled sensors [PUBMED:16600051]. Several functionally different haemoglobins can coexist in the same species. The major types of globins include:

  • Haemoglobin (Hb): tetramer of two alpha and two beta chains, although embryonic and foetal forms can substitute the alpha or beta chain for ones with higher oxygen affinity, such as gamma, delta, epsilon or zeta chains. Hb transports oxygen from lungs to other tissues in vertebrates [PUBMED:16888280]. Hb proteins are also present in unicellular organisms where they act as enzymes or sensors [PUBMED:15598493].
  • Myoglobin (Mb): monomeric protein responsible for oxygen storage in vertebrate muscle [PUBMED:15339940].
  • Neuroglobin: a myoglobin-like haemprotein expressed in vertebrate brain and retina, where it is involved in neuroprotection from damage due to hypoxia or ischemia [PUBMED:12962627]. Neuroglobin belongs to a branch of the globin family that diverged early in evolution.
  • Cytoglobin: an oxygen sensor expressed in multiple tissues. Related to neuroglobin [PUBMED:15804833].
  • Erythrocruorin: highly cooperative extracellular respiratory proteins found in annelids and arthropods that are assembled from as many as 180 subunit into hexagonal bilayers [PUBMED:17084861].
  • Leghaemoglobin (legHb or symbiotic Hb): occurs in the root nodules of leguminous plants, where it facilitates the diffusion of oxygen to symbiotic bacteriods in order to promote nitrogen fixation.
  • Non-symbiotic haemoglobin (NsHb): occurs in non-leguminous plants, and can be over-expressed in stressed plants [PUBMED:17540516].
  • Flavohaemoglobins (FHb): chimeric, with an N-terminal globin domain and a C-terminal ferredoxin reductase-like NAD/FAD-binding domain. FHb provides protection against nitric oxide via its C-terminal domain, which transfers electrons to haem in the globin [PUBMED:11092893].
  • Globin-coupled sensors: chimeric, with an N-terminal myoglobin-like domain and a C-terminal domain that resembles the cytoplasmic signalling domain of bacterial chemoreceptors. They bind oxygen, and act to initiate an aerotactic response or regulate gene expression [PUBMED:11481493, PUBMED:15598488].
  • Protoglobin: a single domain globin found in archaea that is related to the N-terminal domain of globin-coupled sensors [PUBMED:15096613].
  • Truncated 2/2 globin: lack the first helix, giving them a 2-over-2 instead of the canonical 3-over-3 alpha-helical sandwich fold. Can be divided into three main groups (I, II and II) based on structural features [PUBMED:17701548].

This entry covers most of the globin family of proteins, but it omits some bacterial globins and the protoglobins.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Globin (CL0090), which has the following description:

The globin fold is an evolutionary conserved six helical fold that is found in bacteria and eukaryotes.

The clan contains the following 4 members:

Bac_globin Globin Phycobilisome Protoglobin

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(73)
Full
(6000)
Representative proteomes NCBI
(5331)
Meta
(34)
RP15
(348)
RP35
(594)
RP55
(949)
RP75
(1261)
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(73)
Full
(6000)
Representative proteomes NCBI
(5331)
Meta
(34)
RP15
(348)
RP35
(594)
RP55
(949)
RP75
(1261)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(73)
Full
(6000)
Representative proteomes NCBI
(5331)
Meta
(34)
RP15
(348)
RP35
(594)
RP55
(949)
RP75
(1261)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Structure_superposition
Previous IDs: globin;
Type: Domain
Author: Bateman A, Chothia C
Number in seed: 73
Number in full: 6000
Average length of the domain: 99.80 aa
Average identity of full alignment: 25 %
Average coverage of the sequence by the domain: 43.59 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.8 20.8
Trusted cut-off 20.8 20.8
Noise cut-off 20.7 20.7
Model length: 110
Family (HMM) version: 17
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 5 interactions for this family. More...

Globin FAD_binding_6 Ldl_recept_a AHSP NAD_binding_1

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Globin domain has been found. There are 1971 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...