Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
73  structures 4712  species 2  interactions 8050  sequences 166  architectures

Family: Guanylate_kin (PF00625)

Summary: Guanylate kinase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Guanylate kinase". More...

Guanylate kinase Edit Wikipedia article

guanylate kinase
EC number
CAS number 9026-59-9
IntEnz IntEnz view
ExPASy NiceZyme view
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
guanylate kinase
PDB 1gky EBI.jpg
Structure of Guanylate Kinase.[1]
Symbol Guanylate_kin
Pfam PF00625
InterPro IPR008144
SCOP 1gky

In enzymology, a guanylate kinase (EC is an enzyme that catalyzes the chemical reaction

ATP + GMP \rightleftharpoons ADP + GDP

Thus, the two substrates of this enzyme are ATP and GMP, whereas its two products are ADP and GDP.

This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with a phosphate group as acceptor. This enzyme participates in purine metabolism.

Guanylate kinase catalyzes the ATP-dependent phosphorylation of GMP into GDP.[1] It is essential for recycling GMP and indirectly, cGMP. In prokaryotes (such as Escherichia coli), lower eukaryotes (such as yeast) and in vertebrates, GK is a highly conserved monomeric protein of about 200 amino acids. GK has been shown to be structurally similar to protein A57R (or SalG2R) from various strains of Vaccinia virus.[2][3][4]


The systematic name of this enzyme class is ATP:(d)GMP phosphotransferase. Other names in common use include"

  • deoxyguanylate kinase,
  • 5'-GMP kinase,
  • GMP kinase,
  • guanosine monophosphate kinase, and
  • ATP:GMP phosphotransferase.


  1. ^ a b Stehle T, Schulz GE (April 1992). "Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 A resolution". J. Mol. Biol. 224 (4): 1127–41. doi:10.1016/0022-2836(92)90474-X. PMID 1314905. 
  2. ^ Bryant PJ, Woods DF (February 1992). "A major palmitoylated membrane protein of human erythrocytes shows homology to yeast guanylate kinase and to the product of a Drosophila tumor suppressor gene". Cell 68 (4): 621–2. doi:10.1016/0092-8674(92)90136-Z. PMID 1310897. 
  3. ^ Zschocke PD, Schiltz E, Schulz GE (April 1993). "Purification and sequence determination of guanylate kinase from pig brain". Eur. J. Biochem. 213 (1): 263–9. doi:10.1111/j.1432-1033.1993.tb17757.x. PMID 8097461. 
  4. ^ Goebl MG (March 1992). "Is the erythrocyte protein p55 a membrane-bound guanylate kinase?". Trends Biochem. Sci. 17 (3): 99. doi:10.1016/0968-0004(92)90244-4. PMID 1329277. 

Further reading

  • Buccino RJ Jr, Roth JS (1969). "Partial purification and properties of ATP:GMP phosphransferase from rat liver". Arch. Biochem. Biophys. 132 (1): 49–61. doi:10.1016/0003-9861(69)90337-3. PMID 4307347. 
  • Hiraga S, Sugino Y (1966). "Nucleoside monophosphokinases of Escherichia coli infected and uninfected with an RNA phage". Biochim. Biophys. Acta. 114 (2): 416–8. doi:10.1016/0005-2787(66)90324-8. PMID 5329274. 
  • Griffith TJ, Helleiner CW (1965). "The partial purification of deoxynucleoside monophosphate kinases from L cells". Biochim. Biophys. Acta. 108 (1): 114–24. PMID 5862227. 
  • Oeschger MP, Bessman MJ (1966). "Purification and properties of guanylate kinase from Escherichia coli". J. Biol. Chem. 241 (22): 5452–60. PMID 5333666. 
  • Shimono H, Sugino Y (1971). "Metabolism of deoxyribonucleotides. Purification and properties of deoxyguanosine monophosphokinase of calf thymus". Eur. J. Biochem. 19 (2): 256–63. doi:10.1111/j.1432-1033.1971.tb01312.x. PMID 5552394. 

This article incorporates text from the public domain Pfam and InterPro IPR008144

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Guanylate kinase Provide feedback

No Pfam abstract.

Literature references

  1. Stehle T, Schulz GE; , J Mol Biol 1992;224:1127-1141.: Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 A resolution. PUBMED:1314905 EPMC:1314905

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR008144

Guanylate kinase (EC) (GK) [PUBMED:1314905] catalyzes the ATP-dependent phosphorylation of GMP into GDP. It is essential for recycling GMP and indirectly, cGMP. In prokaryotes (such as Escherichia coli), lower eukaryotes (such as yeast) and in vertebrates, GK is a highly conserved monomeric protein of about 200 amino acids. GK has been shown [PUBMED:1310897, PUBMED:8097461, PUBMED:1329277] to be structurally similar to protein A57R (or SalG2R) from various strains of Vaccinia virus.

Proteins containing one or more copies of the DHR domain, an SH3 domain as well as a C-terminal GK-like domain, are collectively termed MAGUKs (membrane-associated guanylate kinase homologs) [PUBMED:8155583], and include Drosophila lethal(1)discs large-1 tumor suppressor protein (gene dlg1); mammalian tight junction protein Zo-1; a family of mammalian synaptic proteins that seem to interact with the cytoplasmic tail of NMDA receptor subunits (SAP90/PSD-95, CHAPSYN-110/PSD-93, SAP97/DLG1 and SAP102); vertebrate 55kDa erythrocyte membrane protein (p55); Caenorhabditis elegans protein lin-2; rat protein CASK; and human proteins DLG2 and DLG3. There is an ATP-binding site (P-loop) in the N-terminal section of GK, which is not conserved in the GK-like domain of the above proteins. However these proteins retain the residues known, in GK, to be involved in the binding of GMP.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan P-loop_NTPase (CL0023), which has the following description:

AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].

The clan contains the following 198 members:

6PF2K AAA AAA-ATPase_like AAA_10 AAA_11 AAA_12 AAA_13 AAA_14 AAA_15 AAA_16 AAA_17 AAA_18 AAA_19 AAA_2 AAA_21 AAA_22 AAA_23 AAA_24 AAA_25 AAA_26 AAA_27 AAA_28 AAA_29 AAA_3 AAA_30 AAA_31 AAA_32 AAA_33 AAA_34 AAA_35 AAA_4 AAA_5 AAA_6 AAA_7 AAA_8 AAA_9 AAA_PrkA ABC_ATPase ABC_tran ABC_tran_2 Adeno_IVa2 Adenylsucc_synt ADK AFG1_ATPase AIG1 APS_kinase Arch_ATPase Arf ArgK ArsA_ATPase ATP-synt_ab ATP_bind_1 ATP_bind_2 Bac_DnaA CbiA CMS1 CoaE CobA_CobO_BtuR CobU cobW CPT CTP_synth_N Cytidylate_kin Cytidylate_kin2 DAP3 DEAD DEAD_2 DLIC DNA_pack_C DNA_pack_N DNA_pol3_delta DNA_pol3_delta2 DnaB_C dNK DUF1253 DUF1611 DUF2075 DUF2478 DUF258 DUF2791 DUF2813 DUF3584 DUF463 DUF815 DUF853 DUF87 DUF927 Dynamin_N Exonuc_V_gamma FeoB_N Fer4_NifH Flavi_DEAD FTHFS FtsK_SpoIIIE G-alpha Gal-3-0_sulfotr GBP GTP_EFTU GTP_EFTU_D2 GTP_EFTU_D4 Gtr1_RagA Guanylate_kin GvpD HDA2-3 Helicase_C Helicase_C_2 Helicase_C_4 Helicase_RecD Herpes_Helicase Herpes_ori_bp Herpes_TK IIGP IPPT IPT IstB_IS21 KaiC KAP_NTPase Kinesin Kinesin-relat_1 Kinesin-related KTI12 LpxK MCM MEDS Mg_chelatase Mg_chelatase_2 MipZ Miro MMR_HSR1 MobB MukB MutS_V Myosin_head NACHT NB-ARC NOG1 NTPase_1 ParA Parvo_NS1 PAXNEB PduV-EutP PhoH PIF1 Podovirus_Gp16 Polyoma_lg_T_C Pox_A32 PPK2 PPV_E1_C PRK Rad17 Rad51 Ras RecA ResIII RHD3 RHSP RNA12 RNA_helicase RuvB_N SbcCD_C SecA_DEAD Septin Sigma54_activ_2 Sigma54_activat SKI SMC_N SNF2_N Spore_IV_A SRP54 SRPRB Sulfotransfer_1 Sulfotransfer_2 Sulfotransfer_3 Sulphotransf T2SE T4SS-DNA_transf Terminase_1 Terminase_3 Terminase_6 Terminase_GpA Thymidylate_kin TIP49 TK TniB Torsin TraG-D_C tRNA_lig_kinase TrwB_AAD_bind UPF0079 UvrD-helicase UvrD_C UvrD_C_2 Viral_helicase1 VirC1 VirE YhjQ Zeta_toxin Zot


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Bateman A
Previous IDs: none
Type: Family
Author: Bateman A
Number in seed: 12
Number in full: 8050
Average length of the domain: 171.00 aa
Average identity of full alignment: 31 %
Average coverage of the sequence by the domain: 44.42 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.6 20.6
Trusted cut-off 20.6 20.6
Noise cut-off 20.5 20.5
Model length: 183
Family (HMM) version: 16
Download: download the raw HMM for this family

Species distribution

Sunburst controls


This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


There are 2 interactions for this family. More...

SH3_2 Guanylate_kin


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Guanylate_kin domain has been found. There are 73 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...