Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
10  structures 6  species 0  interactions 8  sequences 1  architecture

Family: Hyaluronidase_1 (PF07212)

Summary: Hyaluronidase protein (HylP)

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Hyaluronidase". More...

Hyaluronidase Edit Wikipedia article

Hyaluronidase 1 2PE4.png
EC number
CAS number 37326-33-3
IntEnz IntEnz view
ExPASy NiceZyme view
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Symbol Hyaluronidase_1
Pfam PF07212
InterPro IPR009860
Symbol Hyaluronidase_2
Pfam PF07555
InterPro IPR011496

Hyaluronidases are a family of enzymes that catalyse the degradation of hyaluronic acid (HA). Karl Meyer classified these enzymes in 1971 into three distinct groups, a scheme based on the enzyme reaction products.[1] The three main types of hyaluronidases are two classes of eukaryotic endoglycosidase hydrolases and a prokaryotic lyase-type of glycosidase.[2]

In humans, there are five functional hyaluronidases: HYAL1, HYAL2, HYAL3, HYAL4 and HYAL5 (also known as SPAM1 or PH-20); plus a pseudogene, HYAL6 (also known as HYALP1).[3][4] The genes for HYAL1-3 are clustered in chromosome 3, while HYAL4-6 are clustered in chromosome 7.[3] HYAL1 and HYAL2 are the major hyaluronidases in most tissues. GPI-anchored HYAL2 is responsible for cleaving high-molecular weight HA, which is mostly bound to the CD44 receptor. The resulting HA fragments of variable size are then further hydrolized by HYAL1 after being internalized into endo-lysosomes; this generates HA oligosaccharides.[5]

According to their enzymatic mechanism, hyaluronidases are hyaluronoglucosidases (EC, i.e. they cleave the (1->4)-linkages between N-acetylglucosamine and glucuronate. The term hyaluronidase may also refer to hyaluronoglucuronidases (EC, which cleave (1->3)-linkages. In addition, bacterial hyaluronate lyases (EC may also be referred to as hyaluronidases, although this is uncommon.[6]

Use as a drug

Clinical data
AHFS/ Consumer Drug Information
  • C
Routes of
ATC code
CAS Number
  • none
Chemical and physical data
Formula C2455H3775N617O704S21
Molar mass 53870.9 g/mol
 NYesY (what is this?)  (verify)

By catalyzing the hydrolysis of hyaluronan, a constituent of the extracellular matrix (ECM), hyaluronidase lowers the viscosity of hyaluronan, thereby increasing tissue permeability. It is, therefore, used in medicine in conjunction with other drugs to speed their dispersion and delivery. Common applications are ophthalmic surgery, in combination with local anesthetics. It also increases the absorption rate of parenteral fluids given by hypodermoclysis, and is an adjunct in subcutaneous urography for improving resorption of radiopaque agents. Hyaluronidase is also used for extravasation of hyperosmolar solutions.

Brand names of animal-derived hyaluronidase include Hydase (developed and manufactured by PrimaPharm Inc., distributed by Akorn Inc.), which has been FDA-approved as a "thimerosal-free" animal-derived hyaluronidase, Vitrase (Bausch + Lomb/Valeant Pharmaceuticals), Amphadase (Amphastar Pharmaceuticals), and Wydase. Wydase, however, is no longer manufactured.

On December 2, 2005, the United States FDA approved a synthetic (recombinant or rDNA) "human" hyaluronidase, Hylenex (Halozyme Therapeutics).[7] The FDA also approved HyQvia in late 2014,[8] a form of subcutaneous immunoglobulin (SCIG) that uses Hylenex to allow for a far greater volume of SCIG to be administered than would normally be possible to administer subcutaneously, providing a form of SCIG that can be dosed on a monthly basis, a longer period of time than other forms of SCIG allow. HyQvia had a rate of systemic adverse effects higher than traditional subcutaneous forms of immunoglobulin injection, but lower than those typical in IVIG patients.[9] Also in epidural lysis of adhesions for pain management.

Hyaluronidase is a recommended antidote for vinca alkaloid overdose or extravasation.[10]

Role in cancer

The role of hyaluronidases in cancer has been historically controversial due to contradictory observations, namely that levels of hyaluronidase (HYAL1/2) are increased in some cancers (colorectal,[11] bladder, prostate, breast and brain), whereas low expression of HYAL1 is correlated with a decrease in survival of pancreatic adenocarcinoma patients.[12] The reason for this apparent contradiction is that both the accumulation of HA (due to increased HAS levels and decreased HYAL levels), and the degradation of HA into HA oligosaccharides by high HYAL levels result in increased tumor malignancy.[5]

Elevated tissue expression of hyaluronic acid and hyaluronidase validates the HA-HAase urine test for bladder cancer.[13] Limited data support a role of lysosomal hyaluronidases in metastasis, while other data support a role in tumor suppression. Other studies suggest no contribution or effects independent of enzyme activity. Non-specific inhibitors (apigenin, sulfated glycosaminoglycans) or crude enzyme extracts have been used to test most hypotheses, making data difficult to interpret. It has been hypothesized that, by helping degrade the ECM surrounding the tumor, hyaluronidases help cancer cells escape from primary tumor masses. However, studies show that removal of hyaluronan from tumors prevents tumor invasion.[citation needed] Hyaluronidases are also thought to play a role in the process of angiogenesis, although most hyaluronidase preparations are contaminated with large amounts of angiogenic growth factors.[14]

Role in pathogenesis

Some bacteria, such as Staphylococcus aureus, Streptococcus pyogenes,[15] and Clostridium perfringens,[16] produce hyaluronidase as a means of using hyaluronan as a carbon source. It is often speculated that Streptococcus and Staphylococcus pathogens use hyaluronidase as a virulence factor to destroy the polysaccharide that holds animal cells together, making it easier for the pathogen to spread through the tissues of the host organism, but no valid experimental data are available to support this hypothesis.

Hyaluronidases are found in the venom of certain lizards and snakes, as well as honeybees, where they are referred to as "spreading factors", having a function akin to bacterial hyaluronidases.[17]

Role in fertilization

In most mammalian fertilization, hyaluronidase is released by the acrosome of the sperm cell after it has reached the oocyte, by digesting hyaluronan in the corona radiata, thus enabling conception. Gene-targeting studies show that hyaluronidases such as PH20 are not essential for fertilization[citation needed], although exogenous hyaluronidases can disrupt the cumulus matrix.

The majority of mammalian ova are covered in a layer of granulosa cells intertwined in an ECM that contains a high concentration of hyaluronan. When a capacitated sperm reaches the ovum, it is able to penetrate this layer with the assistance of hyaluronidase enzymes present on the surface of the sperm. Once this occurs, the sperm is capable of binding with the zona pellucida, and the acrosome reaction can occur.[18]


  1. ^ Meyer, K (1971). "Hyaluronidases". In Boyer PD. Enzymes. V. New York: Academic Press. pp. 307–320. ISBN 978-0-12-122705-0. 
  2. ^ Stern, Robert; Kogan, Grigorij; Jedrzejas, Mark J.; Šoltés, Ladislav (November 2007). "The many ways to cleave hyaluronan". Biotechnology Advances. 25 (6): 537–557. doi:10.1016/j.biotechadv.2007.07.001. 
  3. ^ a b Csóka, Antonei Benjamin; Scherer, Stephen W.; Stern, Robert (September 1999). "Expression Analysis of Six Paralogous Human Hyaluronidase Genes Clustered on Chromosomes 3p21 and 7q31". Genomics. 60 (3): 356–361. doi:10.1006/geno.1999.5876. PMID 10493834. 
  4. ^ Csoka AB, Frost GI, Stern R (December 2001). "The six hyaluronidase-like genes in the human and mouse genomes". Matrix Biology. 20 (8): 499–508. doi:10.1016/S0945-053X(01)00172-X. PMID 11731267. 
  5. ^ a b Chanmee, Theerawut; Ontong, Pawared; Itano, Naoki (May 2016). "Hyaluronan: A modulator of the tumor microenvironment". Cancer Letters. 375 (1): 20–30. doi:10.1016/j.canlet.2016.02.031. PMID 26921785. 
  6. ^ "Hyaluronidase". ENZYME. ExPASy. Retrieved 17 November 2016. 
  7. ^ "Halozyme Therapeutics and Baxter Healthcare Corporation Announce FDA Approval of Hylenex". Archived from the original on October 18, 2007. Retrieved 2008-11-07. 
  8. ^ "September 12, 2004 Approval Letter". FDA. Retrieved 20 November 2015. 
  9. ^ Sanford, Mark (13 June 2014). "Human Immunoglobulin 10% with Recombinant Human Hyaluronidase: Replacement Therapy in Patients with Primary Immunodeficiency Disorders". BioDrugs. 28 (4): 411–420. doi:10.1007/s40259-014-0104-3. 
  10. ^ "Chemotherapy extravasation guideline" (PDF). WOSCAN Cancer Nursing and Pharmacy Group. September 2009. Retrieved 4 June 2017. 
  11. ^ Bouga, Helen; Tsouros, Isidoros; Bounias, Dimitrios; Kyriakopoulou, Dora; Stavropoulos, Michael S; Papageorgakopoulou, Nikoletta; Theocharis, Dimitrios A; Vynios, Demitrios H (17 September 2010). "Involvement of hyaluronidases in colorectal cancer". BMC Cancer. 10 (1). doi:10.1186/1471-2407-10-499. 
  12. ^ Cheng, XB; Sato, N; Kohi, S; Yamaguchi, K (2013). "Prognostic impact of hyaluronan and its regulators in pancreatic ductal adenocarcinoma". PLoS ONE. 8 (11): e80765. doi:10.1371/journal.pone.0080765. PMC 3823618Freely accessible. PMID 24244714. 
  13. ^ Hautmann, SH; Lokeshwar, VB; Schroeder, GL; Civantos, F; Duncan, RC; Gnann, R; Friedrich, MG; Soloway, MS (June 2001). "Elevated tissue expression of hyaluronic acid and hyaluronidase validates the HA-HAase urine test for bladder cancer". The Journal of Urology. 165 (6 Pt 1): 2068–74. doi:10.1016/s0022-5347(05)66296-9. PMID 11371930. 
  14. ^ Rahmanian, Mehdi; Heldin, Paraskevi (10 February 2002). "Testicular hyaluronidase induces tubular structures of endothelial cells grown in three-dimensional colagen gel through a CD44-mediated mechanism". International Journal of Cancer. 97 (5): 601–607. doi:10.1002/ijc.10087. 
  15. ^ Starr CR, Engleberg NC (January 2006). "Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus". Infection and Immunity. 74 (1): 40–8. doi:10.1128/IAI.74.1.40-48.2006. PMC 1346594Freely accessible. PMID 16368955. 
  16. ^ Zukaite V, Biziulevicius GA (March 2000). "Acceleration of hyaluronidase production in the course of batch cultivation of Clostridium perfringens can be achieved with bacteriolytic enzymes". Letters in Applied Microbiology. 30 (3): 203–6. doi:10.1046/j.1472-765x.2000.00693.x. PMID 10747251. 
  17. ^ Isoyama, T. (13 July 2005). "Differential selectivity of hyaluronidase inhibitors toward acidic and basic hyaluronidases". Glycobiology. 16 (1): 11–21. doi:10.1093/glycob/cwj036. PMID 16166602. 
  18. ^ Alberts, Bruce (2008). Molecular biology of the cell. New York: Garland Science. p. 1298. ISBN 0-8153-4105-9. 

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Hyaluronidase protein (HylP) Provide feedback

This family consists of several phage associated hyaluronidase proteins ( EC: which seem to be specific to Streptococcus pyogenes and Streptococcus pyogenes bacteriophages. The substrate of hyaluronidase is hyaluronic acid, a sugar polymer composed of alternating N-acetylglucosamine and glucuronic acid residues. Hyaluronic acid is found in the ground substance of human connective tissue and the vitreous of the eye and also is the sole component of the capsule of group A streptococci. The capsule has been shown to be an important virulence factor of this organism by virtue of its ability to resist phagocytosis. Production by S. pyogenes of both a hyaluronic acid capsule and hyaluronidase enzymatic activity capable of destroying the capsule is an interesting, yet-unexplained, phenomenon [1].

Literature references

  1. Hynes WL, Hancock L, Ferretti JJ; , Infect Immun 1995;63:3015-3020.: Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity. PUBMED:7622224 EPMC:7622224

This tab holds annotation information from the InterPro database.

InterPro entry IPR009860

This family consists of several phage associated hyaluronidase proteins (EC) which seem to be specific to Streptococcus pyogenes and its bacteriophages. The substrate of hyaluronidase is hyaluronic acid, a sugar polymer composed of alternating N-acetylglucosamine and glucuronic acid residues. Hyaluronic acid is found in the ground substance of human connective tissue and the vitreous of the eye and also is the sole component of the capsule of group A streptococci. The capsule has been shown to be an important virulence factor of this organism by virtue of its ability to resist phagocytosis. Production by S. pyogenes of both a hyaluronic acid capsule and hyaluronidase enzymatic activity capable of destroying the capsule is an interesting, yet-unexplained, phenomenon [PUBMED:7622224].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Phage_fibre (CL0606), which has the following description:

According to SCOP this superfamily includes phage tail fibre proteins that form homotrimers with each chain donating 3 beta-strands per turn of the helix

The clan contains the following 4 members:

End_tail_spike gp12-short_mid Gp5_C Hyaluronidase_1


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View    View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download     Download   Download   Download   Download   Download   Download  
Gzipped Download   Download     Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_16578 (release 10.0)
Previous IDs: Hyaluronidase;
Type: Family
Author: Moxon SJ
Number in seed: 2
Number in full: 8
Average length of the domain: 209.20 aa
Average identity of full alignment: 43 %
Average coverage of the sequence by the domain: 70.48 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 26740544 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.0 25.0
Trusted cut-off 41.6 58.8
Noise cut-off 18.4 18.2
Model length: 278
Family (HMM) version: 10
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Hyaluronidase_1 domain has been found. There are 10 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...