Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
87  structures 634  species 9  interactions 5588  sequences 101  architectures

Family: IBN_N (PF03810)

Summary: Importin-beta N-terminal domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Importin". More...

Importin Edit Wikipedia article

Karyopherin alpha 1 (importin alpha 5)
Protein KPNA1 PDB 2jdq.png
PDB rendering based on 2jdq.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols KPNA1 ; IPOA5; NPI-1; RCH2; SRP1
External IDs OMIM600686 MGI103560 HomoloGene55642 GeneCards: KPNA1 Gene
RNA expression pattern
PBB GE KPNA1 213741 s at tn.png
PBB GE KPNA1 202055 at tn.png
PBB GE KPNA1 202058 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 3836 16646
Ensembl ENSG00000114030 ENSMUSG00000022905
UniProt P52294 Q60960
RefSeq (mRNA) NM_002264 NM_008465
RefSeq (protein) NP_002255 NP_032491
Location (UCSC) Chr 3:
122.14 – 122.23 Mb
Chr 16:
35.98 – 36.04 Mb
PubMed search [1] [2]
Karyopherin (importin) beta 1
Protein KPNB1 PDB 1f59.png
PDB rendering based on 1f59.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols KPNB1 ; IMB1; IPO1; IPOB; Impnb; NTF97
External IDs OMIM602738 MGI107532 HomoloGene1707 ChEMBL: 1741199 GeneCards: KPNB1 Gene
RNA expression pattern
PBB GE KPNB1 213803 at tn.png
PBB GE KPNB1 208974 x at tn.png
PBB GE KPNB1 208975 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 3837 16211
Ensembl ENSG00000108424 ENSMUSG00000001440
UniProt Q14974 P70168
RefSeq (mRNA) NM_001276453 NM_008379
RefSeq (protein) NP_001263382 NP_032405
Location (UCSC) Chr 17:
45.73 – 45.76 Mb
Chr 11:
97.16 – 97.19 Mb
PubMed search [3] [4]

Importin is a type of karyopherin[1] that transports protein molecules into the nucleus by binding to specific recognition sequences, called nuclear localization sequences (NLS).

Importin has two subunits, importin α and importin β. Members of the importin-β family can bind and transport cargo by themselves, or can form heterodimers with importin-α. As part of a heterodimer, importin-β mediates interactions with the pore complex, while importin-α acts as an adaptor protein to bind the nuclear localisation signal (NLS) on the cargo. The NLS-Importin α-Importin β trimer dissociates after binding to Ran GTP inside the nucleus,[2] with the two importin proteins being recycled to the cytoplasm for further use.

Discovery

Importin can exist as either a heterodimer of importin-α/β or as a monomer of Importin-β. Importin-α was first isolated in 1994 by a group including Enno Hartmann, based at the Max Delbrück Center for Molecular Medicine.[1] The process of nuclear protein import had already been characterised in previous reviews,[3] but the key proteins involved had not been elucidated up until that point. A 60kDa cytosolic protein, essential for protein import into the nucleus, and with a 44% sequence identity to SRP1p, was purified from Xenopus eggs. It was cloned, sequenced and expressed in E.coli and in order to completely reconstitute signal dependent transport, had to be combined with Ran(TC4). Other key stimulatory factors were also found in the study.[1]

Importin-β, unlike importin-α, has no direct homologues in yeast, but was purified as a 90-95kDa protein and found to form a heterodimer with importin-α in a number of different cases. These included a study lead by Michael Rexach[4] and further studies by Dirk Görlich.[5] These groups found that importin-α requires another protein, importin-β to function, and that together they form a receptor for nuclear localization signals (NLS), thus allowing transport into the nucleus. Since these initial discoveries in 1994 and 1995, a host of Importin genes, such as IPO4 and IPO7, have been found that facilitate the import of slightly different cargo proteins, due to their differing structure and locality.

Structure

Importin-α

A large proportion of the importin-α adaptor protein is made up of several armadillo repeats (ARM) arranged in tandem. These repeats can stack together to form a curved shaped structure, which facilitates binding to the NLS of specific cargo proteins. The major NLS binding site is found towards the N-terminus, with a minor site being found at the C-terminus. As well as the ARM structures, Importin-α also contains a 90 amino acid N-terminal region, responsible for binding to Importin-β, known as IBB (Importin-β binding domain). This is also a site of autoinhibition, and is implicated in the release of cargo once importin-α reaches the nucleus.[6]

Importin-β

Importin-β is the typical structure of a larger superfamily of karyopherins. The basis of their structure is 18-20 tandem repeats of the HEAT motif. Each one of these repeats contains two antiparallel alpha helices linked by a turn, which stack together to form the overall structure of the protein.[7]

In order to transport cargo into the nucleus, importin-β must associate with the nuclear pore complexes. It does this by forming weak, transient bonds with nucleoporins at their various FG (Phe-Gly) motifs. Crystallographic analysis has shown that these motifs bind to importin-β at shallow hydrophobic pockets found on its surface.[8]

Nuclear Protein Import Cycle

The primary function of importin is to mediate the translocation of proteins with nuclear localization signals into the nucleus, through nuclear pore complexes (NPC), in a process known as the nuclear protein import cycle.

Cargo Binding

The first step of this cycle is the binding of cargo. Importin can perform this function as a monomeric importin-β protein, but usually requires the presence of importin-α, which acts as an adaptor to cargo proteins (via interactions with the NLS). The NLS is a sequence of basic amino acids that tags the protein as cargo destined for the nucleus. A cargo protein can contain either one or two of these motifs, which will bind to the major and/or minor binding sites on importin-α.[9]

Overview of the nuclear protein import cycle.

Cargo Transport

Once the cargo protein is bound, importin-β interacts with the NPC, and the complex diffuses into the nucleus from the cytoplasm. The rate of diffusion depends on both the concentration of importin-α present in the cytoplasm and also the binding affinity of importin-α to the cargo. Once inside the nucleus, the complex interacts with the Ras-family GTPase, Ran-GTP. This leads to the dissociation of the complex by altering the conformation of Importin-β. Importin-β is left bound to Ran-GTP, ready to be recycled.[9]

Cargo Release

Now that the importin-α/cargo complex is free of importin-β, the cargo protein can be released into the nucleus. The N-terminal importin-β-binding (IBB) domain of importin-α contains an auto-regulatory region that mimics the NLS motif. The release of importin-β frees this region and allows it to loop back and compete for binding with the cargo protein at the major NLS-binding site. This competition leads to the release of the protein. In some cases, specific release factors such as Nup2 and Nup50 can be employed to help release the cargo as well.[9]

Importin Recycling

Finally, in order to return to the cytoplasm, importin-α must associate with a Ran-GTP/CAS (nuclear export factor) complex which facilitates its exit from the nucleus. CAS (cellular apoptosis susceptibility protein) is part of the importin-β superfamily of karyopherins and is defined as a nuclear export factor. Importin-β returns to the cytoplasm, still bound to Ran-GTP. Once in the cytoplasm, Ran-GTP is hydrolysed by RanGAP, forming Ran-GDP, and releasing the two importins for further activity. It is this hydrolysis of GTP that provides the energy for the cycle as a whole. In the nucleus, a GEF will charge Ran with a GTP molecule, which is then hydrolysed by a GAP in the cytoplasm, as stated above. It is this activity of Ran that allows for the unidirectional transport of proteins.[9]

Importins and Disease

There are several disease states and pathologies that are associated with mutations or changes in expression of importin-α and importin-β.

Importins are vital regulatory proteins during the processes of gametogenesis and embryogenesis. As a result, a disruption in the expression patterns of importin-α has been shown to cause fertility defects in Drosophila melanogaster.[10]

There have also been studies that link altered importin-α to some cases of cancer. Breast cancer studies have implicated a truncated form of importin-α in which the NLS binding domain is missing.[11] In addition, importin-α has been shown to transport the tumour suppressor gene, BRCA1 (breast cancer type 1 susceptibility protein), into the nucleus. The overexpression of importin-α has also been linked with poor survival rates seen in certain melanoma patients.[12]

Importin activity is also associated with some viral pathologies. For instance, in the infection pathway of the Ebola Virus, a key step is the inhibition of the nuclear import of PY-STAT1. This is achieved by the virus sequestering importin-α in the cytoplasm, meaning it can no longer bind its cargo at the NLS.[13] As a result, importin cannot function and the cargo protein stays in the cytoplasm.

Types of Cargo

Many different cargo proteins can be transported into the nucleus by importin. Often, different proteins will require different combinations of α and β in order to translocate. Some examples of different cargo are listed below.

Cargo Import Receptor
SV40 Importin-β and importin-α
Nucleoplasmin Importin-β and importin-α
STAT1 Importin-β and NPI-1 (type of importin-α)
TFIIA Importin-α not required
U1A Importin-α not required

Human importin genes

Although importin-α and importin-β are used to describe importin as a whole, they actually represent larger families of proteins that share a similar structure and function. Various different genes have been identified for both α and β, with some of them listed below. Note that often karyopherin and importin are used interchangeably.

See also

References

  1. ^ a b c Görlich D, Prehn S, Laskey RA, Hartmann E (1994). "Isolation of a protein that is essential for the first step of nuclear protein import". Cell 79 (5): 767–78. doi:10.1016/0092-8674(94)90067-1. PMID 8001116. 
  2. ^ Mattaj IW, Englmeier L (1998). "Nucleocytoplasmic transport: the soluble phase". Annu. Rev. Biochem. 67: 265–306. doi:10.1146/annurev.biochem.67.1.265. PMID 9759490. 
  3. ^ Garcia Bustos J., Heitman J and Hall, M. (1991). "Nuclear Protein Localization". Biochim. Biophys. acta 1071: 83–101. 
  4. ^ Enenkel C., Blobel G. and Rexach M. (1995). "Identification of a Yeast Karyopherin Heterodimer That Targets Import Substrate to Mammalian Nuclear Pore Complexes". J. Biol. Chem. 270: 16499–502. 
  5. ^ Görlich D., Kostka S., Kraft R., Dingwall C., Laskey RA. et al. (1995). "Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope". Curr. Biol. 5: 383–92. 
  6. ^ Conti E., Uy, M., Leighton L., Blobel G. and Kuriyan J, (1998). "Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha.". Cell 94: 193–204. 
  7. ^ Lee SJ., Matsuura Y., Liu SM. and Stewart M. (2005). "Structural basis for nuclear import complex dissociation by RanGTP.". Nature 435: 693–6. doi:10.1038/nature03578. 
  8. ^ Bayliss R., Littlewood T. and Stewart M. (2000). "Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking.". Cell 102: 99–108. 
  9. ^ a b c d Weis K. (1984). "Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle.". Cell 112: 441–51. 
  10. ^ Terry LJ., Shows EB. and Wente SR. (2007). "Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport.". Science 318: 1412–1416. doi:10.1126/science.1142204. 
  11. ^ Kim IS., Kim DH., Han SM., Chin MU., Nam HJ., Cho HP., Choi SY., Song BJ., Kim ER., Bae YS. et al. (2000). "Truncated form of importin alpha identified in breast cancer cell inhibits nuclear import of p53.". J Biol Chem 275: 23139–23145. doi:10.1074/jbc.M909256199. 
  12. ^ Winnepenninckx V., Lazar V., Michiels S., Dessen P., Stas M., Alonso SR., Avril MF., Ortiz Romero PL., Robert T., Balacescu O. et al. (2006). "Gene expression profiling of primary cutaneous melanoma and clinical outcome.". J Natl Cancer Inst 98: 472–482. doi:10.1093/jnci/djj103. 
  13. ^ Sekimoto T., Imamoto N., Nakajima K., Hirano T. and Yoneda Y. (1997). "Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1". EMBO J. 16: 7067–7077. doi:10.1093/emboj/16.23.7067. 

External links

This article incorporates text from the public domain Pfam and InterPro IPR002652 This article incorporates text from the public domain Pfam and InterPro IPR001494

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Importin-beta N-terminal domain Provide feedback

No Pfam abstract.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001494

This entry represents the N-terminal domain of importin-beta (also known as karyopherins-beta) that is important for the binding of the Ran GTPase protein [PUBMED:10367892].

Members of the importin-beta (karyopherin-beta) family can bind and transport cargo by themselves, or can form heterodimers with importin-alpha. As part of a heterodimer, importin-beta mediates interactions with the pore complex, while importin-alpha acts as an adaptor protein to bind the nuclear localisation signal (NLS) on the cargo through the classical NLS import of proteins. Importin-beta is a helicoidal molecule constructed from 19 HEAT repeats. Many nuclear pore proteins contain FG sequence repeats that can bind to HEAT repeats within importins [PUBMED:12372823, PUBMED:17161424], which is important for importin-beta mediated transport.

Ran GTPase helps to control the unidirectional transfer of cargo. The cytoplasm contains primarily RanGDP and the nucleus RanGTP through the actions of RanGAP and RanGEF, respectively. In the nucleus, RanGTP binds to importin-beta within the importin/cargo complex, causing a conformational change in importin-beta that releases it from importin-alpha-bound cargo. As a result, the N-terminal auto-inhibitory region on importin-alpha is free to loop back and bind to the major NLS-binding site, causing the cargo to be released [PUBMED:17170104]. There are additional release factors as well.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(52)
Full
(5588)
Representative proteomes NCBI
(6355)
Meta
(20)
RP15
(873)
RP35
(1844)
RP55
(2687)
RP75
(3346)
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(52)
Full
(5588)
Representative proteomes NCBI
(6355)
Meta
(20)
RP15
(873)
RP35
(1844)
RP55
(2687)
RP75
(3346)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(52)
Full
(5588)
Representative proteomes NCBI
(6355)
Meta
(20)
RP15
(873)
RP35
(1844)
RP55
(2687)
RP75
(3346)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: PROSITE
Previous IDs: IBN_NT;
Type: Domain
Author: Griffiths-Jones SR
Number in seed: 52
Number in full: 5588
Average length of the domain: 72.60 aa
Average identity of full alignment: 20 %
Average coverage of the sequence by the domain: 7.56 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 80369284 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.9 20.9
Trusted cut-off 20.9 20.9
Noise cut-off 20.8 20.8
Model length: 74
Family (HMM) version: 15
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 9 interactions for this family. More...

Parathyroid CAS_CSE1 Xpo1 IBB UQ_con CRM1_C Cse1 Ras Ras

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the IBN_N domain has been found. There are 87 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...