Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
17  structures 1151  species 1  interaction 1192  sequences 4  architectures

Family: IDH (PF03971)

Summary: Monomeric isocitrate dehydrogenase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Isocitrate dehydrogenase". More...

Isocitrate dehydrogenase Edit Wikipedia article

Isocitrate dehydrogenase
Isocitrate dehydrogenase of Escherichia coli Complex.jpg
Crystallographic structure of E. coli isocitrate dehydrogenase.[1] There are three active sites. Three isocitrates, one isocitrate in the binding site for NADP+.
EC number
CAS number 9028-48-2
IntEnz IntEnz view
ExPASy NiceZyme view
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
isocitrate dehydrogenase (NAD+)
EC number
CAS number 9001-58-5
IntEnz IntEnz view
ExPASy NiceZyme view
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Monomeric isocitrate dehydrogenase
PDB 1itw EBI.jpg
crystal structure of the monomeric isocitrate dehydrogenase in complex with isocitrate and mn
Symbol IDH
Pfam PF03971
Pfam clan CL0270
InterPro IPR004436
SCOP 1ofg

Isocitrate dehydrogenase (IDH) (EC and (EC is an enzyme that catalyzes the oxidative decarboxylation of isocitrate, producing alpha-ketoglutarate (α-ketoglutarate) and CO2. This is a two-step process, which involves oxidation of isocitrate (a secondary alcohol) to oxalosuccinate (a ketone), followed by the decarboxylation of the carboxyl group beta to the ketone, forming alpha-ketoglutarate. In humans, IDH exists in three isoforms: IDH3 catalyzes the third step of the citric acid cycle while converting NAD+ to NADH in the mitochondria. The isoforms IDH1 and IDH2 catalyze the same reaction outside the context of the citric acid cycle and use NADP+ as a cofactor instead of NAD+. They localize to the cytosol as well as the mitochondrion and peroxisome.[2]


The following is a list of human isocitrate dehydrogenase isozymes:

NADP+ dependent

Each NADP+-dependent isozyme functions as a homodimer:

isocitrate dehydrogenase 1 (NADP+), soluble
isocitrate dehydrogenase dimer, Human
Symbol IDH1
Entrez 3417
HUGO 5382
OMIM 147700
RefSeq NM_005896
UniProt O75874
Other data
EC number
Locus Chr. 2 q32-qter
isocitrate dehydrogenase 2 (NADP+), mitochondrial
Symbol IDH2
Entrez 3418
HUGO 5383
OMIM 147650
RefSeq NM_002168
UniProt P48735
Other data
EC number
Locus Chr. 15 q21-qter

NAD+ dependent

The isocitrate dehydrogenase 3 isozyme is a heterotetramer that is composed of two alpha subunits, one beta subunit, and one gamma subunit:

isocitrate dehydrogenase 3 (NAD+) alpha
Symbol IDH3A
Entrez 3419
HUGO 5384
OMIM 601149
RefSeq NM_005530
UniProt P50213
Other data
EC number
Locus Chr. 15 q25.1-25.2
isocitrate dehydrogenase 3 (NAD+) beta
Symbol IDH3B
Entrez 3420
HUGO 5385
OMIM 604526
RefSeq NM_174855
UniProt O43837
Other data
EC number
Locus Chr. 20 p13
isocitrate dehydrogenase 3 (NAD+) gamma
Symbol IDH3G
Entrez 3421
HUGO 5386
OMIM 300089
RefSeq NM_174869
UniProt P51553
Other data
EC number
Locus Chr. X q28


One active site on the Porcine NADP+ dependent enzyme (green).[3] Porcine enzyme is a homodimer and has another active site on the other side.

The NAD-IDH is composed of 3 subunits, is allosterically regulated, and requires an integrated Mg2+ or Mn2+ ion. The closest homologue that has a known structure is the E. coli NADP-dependent IDH, which has only 2 subunits and a 13% identity and 29% similarity based on the amino acid sequences, making it dissimilar to human IDH and not suitable for close comparison. All the known NADP-IDHs are homodimers.

Most isocitrate dehydrogenases are dimers, to be specific, homodimers (two identical monomer subunits forming one dimeric unit). In comparing C. glutamicum and E. coli,[4] monomer and dimer, respectively, both enzymes were found to "efficiently catalyze identical reactions." However, C. glutamicum was recorded as having ten times as much activity than E. coli and seven times more affinitive/specific for NADP. C. glutamicum favored NADP+ over NAD+. In terms of stability with response to temperature, both enzymes had a similar Tm or melting temperature at about 55 °C to 60 °C. However, the monomer C. glutamicum showed a more consistent stability at higher temperatures, which was expected. The dimer E. coli showed stability at a higher temperature than normal due to the interactions between the two monomeric subunits.

The structure of Mycobacterium tuberculosis (Mtb) ICDH-1 bound with NADPH and Mn(2+) bound has been solved by X-ray crystallography. It is a homodimer in which each subunit has a Rossmann fold, and a common top domain of interlocking β sheets. Mtb ICDH-1 is most structurally similar to the R132H mutant human ICDH found in glioblastomas. Similar to human R132H ICDH, Mtb ICDH-1 also catalyzes the formation of α-hydroxyglutarate.[5]


The IDH step of the citric acid cycle, due to its large negative free energy change, is one of the irreversible reactions in the citric acid cycle, and, therefore, must be carefully regulated to avoid unnecessary depletion of isocitrate (and therefore an accumulation of alpha-ketoglutarate). The reaction is stimulated by the simple mechanisms of substrate availability (isocitrate, NAD+ or NADP+, Mg2+ / Mn2+ ), product inhibition (by NADH (or NADPH outside the citric acid cycle) and alpha-ketoglutarate), and competitive feedback inhibition (by ATP).[6]

Catalytic mechanisms

Isocitrate dehydrogenase catalysis|catalyze the chemical reactions

Isocitrate + NAD+ 2-oxoglutarate + CO2 + NADH + H+
Isocitrate + NADP+ 2-oxoglutarate + CO2 + NADPH + H+[7][8][9]

The overall free energy for this reaction is -8.4 kJ/mol.[10]

Catalytic mechanism of the breakdown of isocitrate into oxalosuccinate, then into a final product of alpha-ketoglutarate. The oxalosuccinate intermediate is hypothetical; it has never been observed in the decarboxylating version of the enzyme.[11]


Within the citric acid cycle, isocitrate, produced from the isomerization of citrate, undergoes both oxidation and decarboxylation. Using the enzyme isocitrate dehydrogenase (IDH), isocitrate is held within its active site by surrounding arginine, tyrosine, asparagine, serine, threonine, and aspartic acid amino acids. The first box shows the overall isocitrate dehydrogenase reaction. The reactants necessary for this enzyme mechanism to work are isocitrate, NAD+/NADP+, and Mn2+ or Mg2+. The products of the reaction are alpha-ketoglutarate, carbon dioxide, and NADH + H+/NADPH + H+.[8] Water molecules are used to help deprotonate the oxygens (O3) of isocitrate.

The second box is Step 1, which is the oxidation of the alpha-C (C#2).[7][8] Oxidation is the first step that isocitrate goes through. In this process,[7] the alcohol group off the alpha-carbon (C#2) is deprotonated and the electrons flow to the alpha-C forming a ketone group and removing a hydride off C#2 using NAD+/NADP+ as an electron accepting cofactor. The oxidation of the alpha-C allows for a position where electrons (in the next step) will be coming down from the carboxyl group and pushing the electrons (making the double bonded oxygen) back up on the oxygen or grabbing a nearby proton off a nearby Lysine amino acid.

The third box is Step 2, which is the decarboxylation of oxalosuccinate. In this step,[7][8] the carboxyl group oxygen is deprotonated by a nearby Tyrosine amino acid and those electrons flow down to carbon 2. Carbon dioxide leaves the beta carbon of isocitrate as a leaving group with the electrons flowing to the ketone oxygen off the alpha-C placing a negative charge on the oxygen of the alpha-C and forming an alpha-beta unsaturated double bond between carbons 2 and 3. The lone pair on the alpha-C oxygen picks up a proton from a nearby Lysine amino acid.

The fourth box is Step 3, which is the saturation of the alpha-beta unsaturated double bond between carbons 2 and 3. In this step of the reaction,[7][8] Lysine deprotonates the oxygen off the alpha carbon and the lone pair of electrons on the oxygen of the alpha carbon comes down reforming the ketone double bond and pushing the lone pair (forming the double bond between the alpha and beta carbon) off, picking up a proton from the nearby Tyrosine amino acid.[12] This reaction results in the formation of alpha-ketoglutarate, NADH + H+/NADPH + H+, and CO2.

Detailed mechanism

Two aspartate amino acid residues (below left) are interacting with two adjacent water molecules (w6 and w8) in the Mn2+ isocitrate porcine IDH complex to deprotonate the alcohol off the alpha-carbon atom. The oxidation of the alpha-C also takes place in this picture where NAD+ accepts a hydride resulting in oxalosuccinate. Along with the sp3 to sp2 stereochemical change around the alpha-C, there is a ketone group that is formed form the alcohol group. The formation of this ketone double bond allows for resonance to take place as electrons coming down from the leaving carboxylate group move towards the ketone.

The decarboxylation of oxalosuccinate (below center) is a key step in the formation of alpha-ketoglutarate. In this reaction, the lone pair on the adjacent Tyrosine hydroxyl abstracts the proton off the carboxyl group.[12] This carboxyl group is also referred to as the beta subunit in the isocitrate molecule. The deprotonation of the carboxyl group causes the lone pair of electrons to move down making carbon dioxide and separating from oxalosuccinate. The electrons continue to move towards the alpha carbon pushing the double bond electrons (making the ketone) up to abstract a proton off an adjacent lysine residue. An alpha-beta unsaturated double bond results between carbon 2 and three. As you can see in the picture, the green ion represents either Mg2+ or Mn2+, which is a cofactor necessary for this reaction to occur. The metal-ion forms a little complex through ionic interactions with the oxygen atoms on the fourth and fifth carbons (also known as the gamma subunit of isocitrate).

After the carbon dioxide is split from the oxalosuccinate in the decarboxylation step (below right), the enol will tautomerize to the keto from. The formation of the ketone double bond is started by the deprotonation of that oxygen off the alpha carbon (C#2) by the same lysine that protonated the oxygen in the first place.[12] The lone pair of electrons moves down kicking off the lone pairs that were making the double bond. This lone pair of electrons abstracts a proton off the Tyrosine that deprotonated the carboxyl group in the decarboxylation step. The reason that we can say that the Lys and Tyr residues will be the same from the previous step is because they are helping in holding the isocitrate molecule in the active site of the enzyme. These two residues will be able to form hydrogen bonds back and forth as long as they are close enough to the substrate.[4]

Oxidoreductase step where NAD+ is used to accept a hydride.[12]
Decarboxylation of oxalosuccinate.[12]
Saturation of the alpha-beta unsaturated double bond.[12]

The isocitrate dehydrogenase enzyme as stated above produces alpha-ketoglutarate, carbon dioxide, and NADH + H+/NADPH + H+. There are three changes that occurred throughout the reaction. The oxidation of Carbon 2, the decarboxylation (loss of carbon dioxide) off Carbon 3, and the formation of a ketone group with a stereochemical change from sp3 to sp2.[12]

Porcine Mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Surface view of the active site pocket where isocitrate is bounded by polar amino acids.[3]
Porcine Mitochondrial NADP+-dependent Isocitrate Dehydrogenase Complexed with Mn2+ and Isocitrate.[3]
Porcine Enzyme complex; Active site isocitrate and adjacent A.A.[3]

Active site

Porcine IDH complex, Arg AA stabilizing isocitrate in the active site. residues Arg110, Arg133, and Arg101 are the three main stabilizing amino acids. They help to hold isocitrate in the active site and in the right orientation for isocitrate dehydrogenase to take place.[3]

The Isocitrate Dehydrogenase (IDH) enzyme structure in Escherichia coli was the first structure to be elucidated and understood.[12] Since then, the Escherichia coli IDH structure has been used by most researchers to make comparisons to other isocitrate dehydrogenase enzymes. There is much detailed knowledge about this bacterial enzyme, and it has been found that most isocitrate dehydrogenases are similar in structure and therefore also in function. This similarity of structure and function gives a reason to believe that the structures are conserved as well as the amino acids.[9] Therefore, the active sites amongst most prokaryotic isocitrate dehydrogenase enzymes should be conserved as well, which is observed throughout many studies done on prokaryotic enzymes. Eukaryotic isocitrate dehydrogenase enzymes on the other hand, have not been fully discovered yet. Each dimer of IDH has two active sites.[12] Each active site binds a NAD+/NADP+ molecule and a divalent metal ion (Mg2+,Mn2+). In general, each active site has a conserved sequence of amino acids for each specific binding site. In Desulfotalea psychrophila (DpIDH)[12] and porcine (PcIDH)[3] there are three substrates bound to the active site.

  1. Isocitrate binds within the active site to a conserved sequence of about eight amino acids through hydrogen bonds. These acids include (may vary in residue but with similar properties) tyrosine, serine, asparagine, arginine, arginine, arginine, tyrosine, and lysine. Their positions on the backbone vary but they are all within a close range (i.e. Arg131 DpIDH and Arg133 PcIDH, Tyr138 DpIDH and Tyr140 PcIDH).[12]
  2. The metal ion (Mg2+, Mn2+) binds to three conserved amino acids through hydrogen bonds. These amino acids include three Aspartate residues.[12]
  3. NAD+ and NADP+ bind within the active site within four regions with similar properties amongst IDH enzymes. These regions vary but are around [250–260], [280–290], [300–330], and [365–380]. Again regions vary but the proximity of regions are conserved.[12]

Clinical significance

Expression of mutated IDH1 protein in a case of glioblastoma. Immunohistochemistry using a mouse monoclonal antibody targeting the IDH1 R132H mutation.[13]

Specific mutations in the isocitrate dehydrogenase gene IDH1 have been found in several brain tumors including astrocytoma, oligodendroglioma and glioblastoma multiforme, with mutations found in nearly all cases of secondary glioblastomas, which develop from lower-grade gliomas, but rarely in primary high-grade glioblastoma multiforme.[14] Patients whose tumor had an IDH1 mutation had longer survival.[15][16] Furthermore, mutations of IDH2 and IDH1 were found in up to 20% of cytogenetically normal acute myeloid leukemia (AML).[17][18] These mutations are known to produce (D)-2-hydroxyglutarate from alpha-ketoglutarate.[19] (D)-2-hydroxyglutarate accumulates to very high concentrations which inhibits the function of enzymes that are dependent on alpha-ketoglutarate.[20] This leads to a hypermethylated state of DNA and histones, which results in different gene expression that can activate oncogenes and inactivate tumor-suppressor genes. Ultimately, this may lead to the types of cancer described above.[21] Somatic mosaic mutations of this gene have also been found associated to Ollier disease and Maffucci syndrome.[22] Interestingly, however, recent studies have also shown that (D)-2-hydroxyglutarate may be converted back into alpha-ketoglutarate either enzymatically or non-enzymatically.[23][24] Further studies are required to fully understand the roles of IDH1 mutation (and (D)-2-hydroxyglutarate) in cancer.

See also


  1. ^ PDB: 1CW7​; Cherbavaz DB, Lee ME, Stroud RM, Koshland DE (January 2000). "Active site water molecules revealed in the 2.1 A resolution structure of a site-directed mutant of isocitrate dehydrogenase". J. Mol. Biol. 295 (3): 377–85. doi:10.1006/jmbi.1999.3195. PMID 10623532. 
  2. ^ Corpas FJ, Barroso JB, Sandalio LM, Palma JM, Lupiáñez JA, del Río LA (1999). "Peroxisomal NADP-Dependent Isocitrate Dehydrogenase. Characterization and Activity Regulation during Natural Senescence". Plant Physiol. 121 (3): 921–928. doi:10.1104/pp.121.3.921. PMC 59455Freely accessible. PMID 10557241. 
  3. ^ a b c d e f PDB: 1LWD​; Ceccarelli C, Neil B (2002). "The Crystal Structure of Porcine Mitochondrial NADP+-dependent Isocitrate Dehydrogenase Complexed with Mn2+ and Isocitrate". Journal of Biological Chemistry. 277 (45): 43454–43462. doi:10.1074/jbc.M207306200. PMID 12207025. 
  4. ^ a b Chen R, Yang H (November 2000). "A highly specific monomeric isocitrate dehydrogenase from Corynebacterium glutamicum". Arch. Biochem. Biophys. 383 (2): 238–45. doi:10.1006/abbi.2000.2082. PMID 11185559. 
  5. ^ Quartararo CE, Hazra S, Hadi T, Blanchard JS (2013). "Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis". Biochemistry. 52 (10): 1765–75. doi:10.1021/bi400037w. PMC 3706558Freely accessible. PMID 23409873. 
  6. ^ Maeting, Ines; Schmidt, Georg; Sahm, Hermann; Stahmann, K.-Peter (2000). "Role of a peroxisomal NADP-specific isocitrate dehydrogenase in the metabolism of the riboflavin overproducer Ashbya gossypii". Journal of Molecular Catalysis B: Enzymatic. 10: 335–343. doi:10.1016/S1381-1177(00)00135-1. 
  7. ^ a b c d e Tadhg P. Begley; McMurry, John (2005). The Organic Chemistry of Biological Pathways. Roberts and Co. Publishers. pp. 189–190. ISBN 0-9747077-1-6. 
  8. ^ a b c d e Cox, Michael; Nelson, David R.; Lehninger, Albert L (2005). Lehninger Principles of Biochemistry. San Francisco: W.H. Freeman. pp. 609–611. ISBN 0-7167-4339-6. 
  9. ^ a b Yasutake Y, Watanabe S, Yao M, Takada Y, Fukunaga N, Tanaka I (2003). "Crystal Structure of the Monomeric Isocitrate Dehydrogenase in the Presence of NADP+". Journal of Biological Chemistry. 278 (38): 36897–36904. doi:10.1074/jbc.M304091200. PMID 12855708. 
  10. ^ Garrett, Reginald; Grisham, Charles M. (2012). Biochemistry. Cengage Learning. p. 621. ISBN 978-1133106296. 
  11. ^ Aoshima M, Igarashi Y (March 2008). "Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase". Journal of Bacteriology. 190 (6): 2050–5. doi:10.1128/JB.01799-07. PMC 2258884Freely accessible. PMID 18203822. 
  12. ^ a b c d e f g h i j k l m Fedøy AE, Yang N, Martinez A, Leiros HK, Steen IH (September 2007). "Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability". J. Mol. Biol. 372 (1): 130–49. doi:10.1016/j.jmb.2007.06.040. PMID 17632124. 
  13. ^ Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (November 2009). "Monoclonal antibody specific for IDH1 R132H mutation". Acta Neuropathol. 118 (5): 599–601. doi:10.1007/s00401-009-0595-z. PMID 19798509. 
  14. ^ Bleeker, FE; Molenaar, RJ; Leenstra, S (May 2012). "Recent advances in the molecular understanding of glioblastoma". Journal of Neuro-Oncology. 108 (1): 11–27. doi:10.1007/s11060-011-0793-0. PMC 3337398Freely accessible. PMID 22270850. 
  15. ^ Hartmann C, Hentschel B, Wick W, et al. (December 2010). "Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas". Acta Neuropathol. 120 (6): 707–18. doi:10.1007/s00401-010-0781-z. PMID 21088844. 
  16. ^ Molenaar, RJ; Verbaan, D; Lamba, S; Zanon, C; Jeuken, JW; Boots-Sprenger, SH; Wesseling, P; Hulsebos, TJ; Troost, D; van Tilborg, AA; Leenstra, S; Vandertop, WP; Bardelli, A; van Noorden, CJ; Bleeker, FE (September 2014). "The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone". Neuro-oncology. 16 (9): 1263–73. doi:10.1093/neuonc/nou005. PMC 4136888Freely accessible. PMID 24510240. 
  17. ^ Ward PS, Patel J, Wise DR, et al. (March 2010). "The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate". Cancer Cell. 17 (3): 225–34. doi:10.1016/j.ccr.2010.01.020. PMC 2849316Freely accessible. PMID 20171147. 
  18. ^ Wang Y, Xiao M, Chen X, Chen L, Xu Y, Lv L, Wang P, Yang H, Ma S, Lin H, Jiao B, Ren R, Ye D, Guan KL, Xiong Y (Feb 2015). "WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation". Molecular Cell. 57 (4): 662–73. doi:10.1016/j.molcel.2014.12.023. PMC 4336627Freely accessible. PMID 25601757. 
  19. ^ Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (June 2010). "Cancer-associated IDH1 mutations produce 2-hydroxyglutarate". Nature. 465 (7300): 966. doi:10.1038/nature09132. PMC 3766976Freely accessible. PMID 20559394. 
  20. ^ Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IKH, Li XS, Woon EC, Yang M, McDonough MA, King ON, Clifton IJ, Klose RJ, Claridge TDW, Ratcliffe PJ, Schofield CJ, Kawamura A (May 2011). "The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases". EMBO Reports. 12 (5): 463–9. doi:10.1038/embor.2011.43. PMC 3090014Freely accessible. PMID 21460794. 
  21. ^ Molenaar, RJ; Radivoyevitch, T; Maciejewski, JP; van Noorden, CJ; Bleeker, FE (28 May 2014). "The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation". Biochimica et Biophysica Acta. 1846 (2): 326–341. doi:10.1016/j.bbcan.2014.05.004. PMID 24880135. 
  22. ^ Amary MF, Damato S, Halai D, Eskandarpour M, Berisha F, Bonar F, McCarthy S, Fantin VR, Straley KS, Lobo S, Aston W, Green CL, Gale RE, Tirabosco R, Futreal A, Campbell P, Presneau N, Flanagan AM (2011). "Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2". Nat. Genet. 43 (12): 1262–5. doi:10.1038/ng.994. PMID 22057236. 
  23. ^ Tarhonskaya H, Rydzik AM, Leung IKH, Loik ND, Chan MC, Kawamura A, McCullagh JS, Claridge TDW, Flashman E, Schofield CJ (March 2014). "Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases". Nature Communications. 5: 3423. doi:10.1038/ncomms4423. PMC 3959194Freely accessible. PMID 24594748. 
  24. ^ Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA, Joensuu P, Bergmann U, Gross S, Travins J, Weiss S, Looper R, Ligon KL, Verhaak RG, Yan H, Kaelin WG Jr (February 2012). "Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation". Nature. 483 (7390): 484–8. doi:10.1038/nature10898. PMC 3656605Freely accessible. PMID 22343896. 

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Monomeric isocitrate dehydrogenase Provide feedback

NADP(+)-dependent isocitrate dehydrogenase (ICD) is an important enzyme of the intermediary metabolism, as it controls the carbon flux within the citric acid cycle and supplies the cell with 2-oxoglutarate EC: and NADPH for biosynthetic purposes [2].

Literature references

  1. Ishii A, Suzuki M, Sahara T, Takada Y, Sasaki S, Fukunaga N; , J Bacteriol 1993;175:6873-6880.: Genes encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. strain ABE-1. PUBMED:8226630 EPMC:8226630

  2. Eikmanns BJ, Rittmann D, Sahm H; , J Bacteriol 1995;177:774-782.: Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. PUBMED:7836312 EPMC:7836312

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR004436

This family of enzymes catalyses the NADP(+)-dependent oxidative decarboxylation of isocitrate to form 2-oxoglutarate, CO2, and NADPH within the Krebs cycle (EC). Thus this enzyme supplies the cell with a key intermediate in energy metabolism, and precursors for biosynthetic pathways. The activity of this enzyme, which is controlled by phosphorylation, helps regulate carbon flux between the Krebs cycle and the glyoxylate bypass, which is an alternate route that accumulates carbon for biosynthesis when acetate is the sole carbon source for growth [PUBMED:7836312]. The phosphorylation state of this enzyme is controlled by isocitrate dehydrogenase kinase/phosphatase. This family has been found in a number of bacterial species including Azotobacter vinelandii, Corynebacterium glutamicum, Rhodomicrobium vannielii, and Neisseria meningitidis.

The structure of isocitrate dehydrogenase from Azotobacter vinelandii (SWISSPROT) has been determined [PUBMED:12467571]. This molecule consists of two distinct domains, a small domain and a large domain, with a folding topology similar to that of dimeric isocitrate dehydrogenase from Escherichia coli (SWISSPROT). The structure of the large domain repeats a motif observed in the dimeric enzyme. Such a fusional structure by domain duplication enables a single polypeptide chain to form a structure at the catalytic site that is homologous to the dimeric enzyme, the catalytic site of which is located at the interface of two identical subunits.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Iso_DH (CL0270), which has the following description:

This superfamily of enzymes form dimers and have an active site between the two halves.

The clan contains the following 5 members:

FA_synthesis IDH Iso_dh PdxA PTA_PTB


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: COG2838
Previous IDs: none
Type: Family
Author: Bateman A
Number in seed: 183
Number in full: 1192
Average length of the domain: 710.00 aa
Average identity of full alignment: 62 %
Average coverage of the sequence by the domain: 98.58 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 26740544 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.0 25.0
Trusted cut-off 25.5 25.6
Noise cut-off 24.3 24.6
Model length: 734
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


There is 1 interaction for this family. More...



For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the IDH domain has been found. There are 17 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...