Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
14  structures 65  species 1  interaction 66  sequences 1  architecture

Family: KaiA (PF07688)

Summary: KaiA domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Cyanobacterial clock proteins". More...

Cyanobacterial clock proteins Edit Wikipedia article

KaiA domain
PDB 1r8j EBI.jpg
crystal structure of circadian clock protein kaia from synechococcus elongatus
Identifiers
Symbol KaiA
Pfam PF07688
InterPro IPR011648
KaiB domain
PDB 1t4y EBI.jpg
solution structure of the n-terminal domain of synechococcus elongatus sasa (average minimized structure)
Identifiers
Symbol KaiB
Pfam PF07689
Pfam clan CL0172
InterPro IPR011649
CDD cd02978
KaiC
PDB 2gbl EBI.jpg
crystal structure of full length circadian clock protein kaic with phosphorylation sites
Identifiers
Symbol KaiC
Pfam PF06745
Pfam clan CL0023
InterPro IPR014774
CDD cd01124

In molecular biology, the cyanobacterial clock proteins are the main circadian regulator in cyanobacteria. The cyanobacterial clock proteins comprise three proteins: KaiA, KaiB and KaiC. The kaiABC complex may act as a promoter-nonspecific transcription regulator that represses transcription, possibly by acting on the state of chromosome compaction.

In the complex, KaiA enhances the phosphorylation status of kaiC. In contrast, the presence of kaiB in the complex decreases the phosphorylation status of kaiC, suggesting that kaiB acts by antagonising the interaction between kaiA and kaiC. The activity of KaiA activates kaiBC expression, while KaiC represses it. The overall fold of the KaiA monomer is that of a four-helix bundle, which forms a dimer in the known structure.[1] KaiA functions as a homodimer. Each monomer is composed of three functional domains: the N-terminal amplitude-amplifier domain, the central period-adjuster domain and the C-terminal clock-oscillator domain. The N-terminal domain of KaiA, from cyanobacteria, acts as a pseudo-receiver domain, but lacks the conserved aspartyl residue required for phosphotransfer in response regulators.[2] The C-terminal domain is responsible for dimer formation, binding to KaiC, enhancing KaiC phosphorylation and generating the circadian oscillations.[3] The KaiA protein from Anabaena sp. (strain PCC 7120) lacks the N-terminal CheY-like domain.

KaiB adopts an alpha-beta meander motif and is found to be a dimer or a tetramer.[1][4]

KaiC belongs to a larger family of proteins; it performs autophosphorylation and acts as its own transcriptional repressor. It binds ATP.[5]

Also in the KiaC family is RadA/Sms, a highly conserved eubacterial protein that shares sequence similarity with both RecA strand transferase and lon protease. The RadA/Sms family are probable ATP-dependent proteases involved in both DNA repair and degradation of proteins, peptides, glycopeptides. They are classified in as non-peptidase homologues and unassigned peptidases in MEROPS peptidase family S16 (lon protease family, clan SJ). RadA/Sms is involved in recombination and recombinational repair, most likely involving the stabilisation or processing of branched DNA molecules or blocked replication forks because of its genetic redundancy with RecG and RuvABC.[6]

References

  1. ^ a b Garces RG, Wu N, Gillon W, Pai EF (April 2004). "Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC". EMBO J. 23 (8): 1688–98. doi:10.1038/sj.emboj.7600190. PMC 394244. PMID 15071498. 
  2. ^ Williams SB, Vakonakis I, Golden SS, LiWang AC (November 2002). "Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism". Proc. Natl. Acad. Sci. U.S.A. 99 (24): 15357–62. doi:10.1073/pnas.232517099. PMC 137721. PMID 12438647. 
  3. ^ Uzumaki T, Fujita M, Nakatsu T, Hayashi F, Shibata H, Itoh N, Kato H, Ishiura M (July 2004). "Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein". Nat. Struct. Mol. Biol. 11 (7): 623–31. doi:10.1038/nsmb781. PMID 15170179. 
  4. ^ Hitomi K, Oyama T, Han S, Arvai AS, Getzoff ED (2005). "Tetrameric architecture of the circadian clock protein KaiB. A novel interface for intermolecular interactions and its impact on the circadian rhythm.". J Biol Chem 280 (19): 19127–35. doi:10.1074/jbc.M411284200. PMID 15716274. 
  5. ^ Pattanayek R, Wang J, Mori T, Xu Y, Johnson CH, Egli M (2004). "Visualizing a circadian clock protein: crystal structure of KaiC and functional insights.". Mol Cell 15 (3): 375–88. doi:10.1016/j.molcel.2004.07.013. PMID 15304218. 
  6. ^ Beam CE, Saveson CJ, Lovett ST (December 2002). "Role for radA/sms in recombination intermediate processing in Escherichia coli". J. Bacteriol. 184 (24): 6836–44. doi:10.1128/jb.184.24.6836-6844.2002. PMC 135464. PMID 12446634. 

This article incorporates text from the public domain Pfam and InterPro IPR011648

This article incorporates text from the public domain Pfam and InterPro IPR011649

This article incorporates text from the public domain Pfam and InterPro IPR014774

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

KaiA domain Provide feedback

The cyanobacterial clock proteins KaiA and KaiB are proposed as regulators of the circadian rhythm in cyanobacteria. The overall fold of the KaiA monomer is that of a four-helix bundle, which forms a dimer in the known structure [1].

Literature references

  1. Garces RG, Wu N, Gillon W, Pai EF; , EMBO J 2004;23:1688-1698.: Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC. PUBMED:15071498 EPMC:15071498


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR011648

KaiA is a component of the kaiABC clock protein complex, which constitutes the main circadian regulator in cyanobacteria. The kaiABC complex may act as a promoter-nonspecific transcription regulator that represses transcription, possibly by acting on the state of chromosome compaction. In the complex, KaiA enhances the phosphorylation status of kaiC. In contrast, the presence of kaiB in the complex decreases the phosphorylation status of kaiC, suggesting that kaiB acts by antagonising the interaction between kaiA and kaiC. The activity of KaiA activates kaiBC expression, while KaiC represses it. The overall fold of the KaiA monomer is that of a four-helix bundle, which forms a dimer in the known structure [PUBMED:15071498]. KaiA functions as a homodimer. Each monomer is composed of three functional domains: the N-terminal amplitude-amplifier domain, the central period-adjuster domain and the C-termianl clock-oscillator domain. The N-terminal domain of KaiA, from cyanobacteria, acts as a psuedo-receiver domain, but lacks the conserved aspartyl residue required for phosphotransfer in response regulators [PUBMED:12438647]. The C-terminal domain is responsible for dimer formation, binding to KaiC, enhancing KaiC phosphorylation and generating the circadian oscillations [PUBMED:15170179]. The KaiA protein from Anabaena sp. (strain PCC 7120) lacks the N-terminal CheY-like domain.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(3)
Full
(66)
Representative proteomes NCBI
(79)
Meta
(31)
RP15
(2)
RP35
(14)
RP55
(20)
RP75
(22)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(3)
Full
(66)
Representative proteomes NCBI
(79)
Meta
(31)
RP15
(2)
RP35
(14)
RP55
(20)
RP75
(22)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(3)
Full
(66)
Representative proteomes NCBI
(79)
Meta
(31)
RP15
(2)
RP35
(14)
RP55
(20)
RP75
(22)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Bateman A
Previous IDs: none
Type: Domain
Author: Bateman A
Number in seed: 3
Number in full: 66
Average length of the domain: 249.20 aa
Average identity of full alignment: 44 %
Average coverage of the sequence by the domain: 92.72 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 30.0 30.0
Trusted cut-off 47.9 47.7
Noise cut-off 27.2 26.1
Model length: 283
Family (HMM) version: 7
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

KaiA

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the KaiA domain has been found. There are 14 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...