Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
35  structures 833  species 1  interaction 889  sequences 29  architectures

Family: OGG_N (PF07934)

Summary: 8-oxoguanine DNA glycosylase, N-terminal domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Oxoguanine glycosylase". More...

Oxoguanine glycosylase Edit Wikipedia article

Protein OGG1 PDB 1ebm.png
Available structures
PDB Ortholog search: PDBe RCSB
Aliases OGG1, HMMH, HMUTM, OGH1, 8-oxoguanine DNA glycosylase
External IDs OMIM: 601982 MGI: 1097693 HomoloGene: 1909 GeneCards: 4968
RNA expression pattern
PBB GE OGG1 205301 s at tn.png

PBB GE OGG1 205760 s at tn.png
More reference expression data
Species Human Mouse
RefSeq (mRNA)


RefSeq (protein)


Location (UCSC) Chr 3: 9.75 – 9.79 Mb Chr 6: 113.33 – 113.34 Mb
PubMed search [1] [2]
View/Edit Human View/Edit Mouse
8-oxoguanine DNA glycosylase, N-terminal domain
PDB 2noh EBI.jpg
structure of catalytically inactive q315a human 8-oxoguanine glycosylase complexed to 8-oxoguanine dna
Symbol OGG_N
Pfam PF07934
Pfam clan CL0407
InterPro IPR012904
SCOP 1ebm

8-Oxoguanine glycosylase also known as OGG1 is a DNA glycosylase enzyme that, in humans, is encoded by the OGG1 gene. It is involved in base excision repair. It is found in bacterial, archaeal and eukaryotic species.


OGG1 is the primary enzyme responsible for the excision of 8-oxoguanine (8-oxoG), a mutagenic base byproduct that occurs as a result of exposure to reactive oxygen species (ROS). OGG1 is a bifunctional glycosylase, as it is able to both cleave the glycosidic bond of the mutagenic lesion and cause a strand break in the DNA backbone. Alternative splicing of the C-terminal region of this gene classifies splice variants into two major groups, type 1 and type 2, depending on the last exon of the sequence. Type 1 alternative splice variants end with exon 7 and type 2 end with exon 8. One set of spliced forms are designated 1a, 1b, 2a to 2e.[3] All variants have the N-terminal region in common. Many alternative splice variants for this gene have been described, but the full-length nature for every variant has not been determined. In eukaryotes, the N-terminus of this gene contains a mitochondrial targeting signal, essential for mitochondrial localization.[4] However, OGG1-1a also has a nuclear location signal at its C-terminal end that suppresses mitochondrial targeting and causes OGG1-1a to localize to the nucleus.[3] The main form of OGG1 that localizes to the mitochondria is OGG1-2a.[3] A conserved N-terminal domain contributes residues to the 8-oxoguanine binding pocket. This domain is organised into a single copy of a TBP-like fold.[5]

Despite the presumed importance of this enzyme, mice lacking Ogg1 have been generated and found to have a normal lifespan,[6] and Ogg1 knockout mice have a higher probability to develop cancer, whereas Mth1 gene disruption concomitantly suppresses lung cancer development in Ogg1-/- mice.[7] Interestingly, mice lacking Ogg1 have been shown to be prone to increased body weight and obesity, as well as high-fat diet induced insulin resistance.[8] There is some controversy as to whether deletion of Ogg1 actually leads to increased 8-oxo-dG levels: the HPLC-EC assay suggests up to 6 fold higher levels of 8-oxo-dG in nuclear DNA and 20-fold higher in mitochondrial DNA whereas the fappy-glycosylase assay indicates no change.[citation needed]

OGG1 deficiency and increased 8-oxo-dG in mice

Colonic epithelium from a mouse not undergoing colonic tumorigenesis (A), and a mouse that is undergoing colonic tumorigenesis (B). Cell nuclei are stained dark blue with hematoxylin (for nucleic acid) and immunostained brown for 8-oxo-dG. The level of 8-oxo-dG was graded in the nuclei of colonic crypt cells on a scale of 0-4. Mice not undergoing tumorigenesis had crypt 8-oxo-dG at levels 0 to 2 (panel A shows level 1) while mice progressing to colonic tumors had 8-oxo-dG in colonic crypts at levels 3 to 4 (panel B shows level 4) Tumorigenesis was induced by adding deoxycholate to the mouse diet to give a level of deoxycholate in the mouse colon similar to the level in the colon of humans on a high fat diet.[9] The images were made from original photomicrographs.

Mice without a functional OGG1 gene have about a 5-fold increased level of 8-oxo-dG in their livers compared to mice with wild-type OGG1.[7] Mice defective in OGG1 also have an increased risk for cancer.[7] Kunisada et al.[10] irradiated mice without a functional OGG1 gene (OGG1 knock-out mice) and wild-type mice three times a week for forty weeks with UVB light at a relatively low dose (not enough to cause skin redness). Both types of mice had high levels of 8-oxo-dG in their epidermal cells three hours after irradiation. However, 24 hours later, the majority of 8-oxo-dG was absent from the epidermal cells of the wild-type mice but 8-oxo-dG remained elevated in the epidermal cells of the OGG1 knock-out mice. The irradiated OGG1 knock-out mice had more than twice the level of skin tumors compared to irradiated wild-type mice, and the rate of malignancy within the tumors was higher in the OGG1 knock-out mice (73%) than in the wild-type mice (50%).

As reviewed by Valavanidis et al.,[11] increased levels of 8-oxo-dG in a tissue can serve as a biomarker of oxidative stress. They also noted that increased levels of 8-oxo-dG are frequently found during carcinogenesis.

In the figure showing examples of mouse colonic epithelium, the colonic epithelium from a mouse on a normal diet was found to have a low level of 8-oxo-dG in its colonic crypts (panel A). However, a mouse likely undergoing colonic tumorigenesis (due to deoxycholate added to its diet[9]) was found to have a high level of 8-oxo-dG in its colonic epithelium (panel B). Deoxycholate increases intracellular production of reactive oxygen resulting in increased oxidative stress,[12][13] and this can lead to tumorigenesis and carcinogenesis.

Epigenetic control

In a breast cancer study, the methylation level of the OGG1 promoter was found to be anti-correlated with expression level of OGG1 messenger RNA.[14] This means that hypermethylation was associated with low expression of OGG1 and hypomethylation was correlated with over-expression of OGG1. Thus, OGG1 expression is under epigenetic control. Breast cancers with methylation levels of the OGG1 promoter that were more than two standard deviations either above or below the normal were each associated with reduced patient survival.[14]

OGG1 in cancers

OGG1 is the primary enzyme responsible for the excision of 8-oxo-2'-deoxyguanosine (8-oxo-dG). Even when OGG1 expression is normal, the presence of 8-oxo-dG is mutagenic since OGG1 is not 100% effective. Yasui et al.[15] examined the fate of 8-oxo-dG when this oxidized derivative of deoxyguanosine was inserted into a specific gene in 800 cells in culture. After replication of the cells, 8-oxo-dG was restored to G in 86% of the clones, probably reflecting accurate OGG1 base excision repair or translesion synthesis without mutation. G:C to T:A transversions occurred in 5.9% of the clones, single base deletions in 2.1% and G:C to C:G transversions in 1.2%. Together, these mutations were the most common, totalling 9.2% of the 14% of mutations generated at the site of the 8-oxo-dG insertion. Among the other mutations in the 800 clones analyzed, there were also 3 larger deletions, of sizes 6, 33 and 135 base pairs. Thus 8-oxo-dG can directly cause mutations, some of which may contribute to carcinogenesis.

If OGG1 expression is reduced in cells, increased mutagenesis, and therefore increased carcinogenesis would be expected. The table, below, lists cancers with reduced expression of OGG1.

Table 1. OGG1 expression in sporadic cancers
Cancer Expression Form of OGG1 8-oxo-dG Evaluation method Ref.
Head and neck cancer Under-expression OGG1-2a - messenger RNA [16]
Adenocarcinoma of gastric cardia Under-expression cytoplasmic increased immunohistochemistry [17]
Astrocytoma Under-expression total cell OGG1 - messenger RNA [18]
Esophageal cancer 48% Under-expression nuclear increased immunohistochemistry [19]
- 40% Under-expression cytoplasm increased immunohistochemistry [19]

OGG1 or OGG activity in blood, and cancer

OGG1 methylation levels in blood cells were measured in a prospective study of 582 US Veterans, median age 72, and followed for 13 years. High OGG1 methylation at a particular promoter region was associated with increased risk for any cancer, and in particular for risk of prostate cancer.[20]

Enzymatic activity excising 8-oxoguanine from DNA (OGG activity) was reduced in peripheral blood mononuclear cells (PBMCs), and in paired lung tissue, from patients with non–small cell lung cancer.[21] OGG activity was also reduced in PBMCs of patients with head and neck squamous cell carcinoma (HNSCC).[22]


Oxoguanine glycosylase has been shown to interact with XRCC1[23] and PKC alpha.[24]


  • OGG1 may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.[25]


  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ a b c Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, Sugimachi K, Nakabeppu Y (1999). "Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs". Mol. Biol. Cell. 10 (5): 1637–52. doi:10.1091/mbc.10.5.1637. PMC 30487free to read. PMID 10233168. 
  4. ^ "Entrez Gene: OGG1 8-oxoguanine DNA glycosylase". 
  5. ^ Bjørås M, Seeberg E, Luna L, Pearl LH, Barrett TE (March 2002). "Reciprocal "flipping" underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase". J. Mol. Biol. 317 (2): 171–7. doi:10.1006/jmbi.2002.5400. PMID 11902834. 
  6. ^ Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE (November 1999). "Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage". Proc. Natl. Acad. Sci. U.S.A. 96 (23): 13300–5. doi:10.1073/pnas.96.23.13300. PMC 23942free to read. PMID 10557315. 
  7. ^ a b c Sakumi K, Tominaga Y, Furuichi M, Xu P, Tsuzuki T, Sekiguchi M, Nakabeppu Y (2003). "Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption". Cancer Res. 63 (5): 902–5. PMID 12615700. 
  8. ^ Sampath H, Vartanian V, Rollins MR, Sakumi K, Nakabeppu Y, Lloyd RS (December 2012). "8-Oxoguanine DNA glycosylase (OGG1) deficiency increases susceptibility to obesity and metabolic dysfunction". PLoS ONE. 7 (12): e51697. doi:10.1371/journal.pone.0051697. PMC 3524114free to read. PMID 23284747. 
  9. ^ a b Prasad AR, Prasad S, Nguyen H, Facista A, Lewis C, Zaitlin B, Bernstein H, Bernstein C (2014). "Novel diet-related mouse model of colon cancer parallels human colon cancer". World J Gastrointest Oncol. 6 (7): 225–43. doi:10.4251/wjgo.v6.i7.225. PMC 4092339free to read. PMID 25024814. 
  10. ^ Kunisada M, Sakumi K, Tominaga Y, Budiyanto A, Ueda M, Ichihashi M, Nakabeppu Y, Nishigori C (2005). "8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis". Cancer Res. 65 (14): 6006–10. doi:10.1158/0008-5472.CAN-05-0724. PMID 16024598. 
  11. ^ Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S (2013). "Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms". Int J Environ Res Public Health. 10 (9): 3886–907. doi:10.3390/ijerph10093886. PMC 3799517free to read. PMID 23985773. 
  12. ^ Tsuei J, Chau T, Mills D, Wan YJ. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp Biol Med (Maywood). 2014 Nov;239(11):1489-504. doi: 10.1177/1535370214538743. PMID 24951470
  13. ^ Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol. 2014 May 24;12:164. doi: 10.1186/1477-7819-12-164. Review. PMID 24884764
  14. ^ a b Fleischer T, Edvardsen H, Solvang HK, Daviaud C, Naume B, Børresen-Dale AL, Kristensen VN, Tost J (2014). "Integrated analysis of high-resolution DNA methylation profiles, gene expression, germline genotypes and clinical end points in breast cancer patients". Int. J. Cancer. 134 (11): 2615–25. doi:10.1002/ijc.28606. PMID 24395279. 
  15. ^ Yasui M, Kanemaru Y, Kamoshita N, Suzuki T, Arakawa T, Honma M (2014). "Tracing the fates of site-specifically introduced DNA adducts in the human genome". DNA Repair (Amst.). 15: 11–20. doi:10.1016/j.dnarep.2014.01.003. PMID 24559511. 
  16. ^ Mahjabeen I, Kayani MA (2016). "Loss of Mitochondrial Tumor Suppressor Genes Expression Is Associated with Unfavorable Clinical Outcome in Head and Neck Squamous Cell Carcinoma: Data from Retrospective Study". PLoS ONE. 11 (1): e0146948. doi:10.1371/journal.pone.0146948. PMC 4718451free to read. PMID 26785117. 
  17. ^ Kohno Y, Yamamoto H, Hirahashi M, Kumagae Y, Nakamura M, Oki E, Oda Y (2016). "Reduced MUTYH, MTH1, and OGG1 expression and TP53 mutation in diffuse-type adenocarcinoma of gastric cardia". Hum. Pathol. 52: 145–52. doi:10.1016/j.humpath.2016.01.006. PMID 26980051. 
  18. ^ Jiang Z, Hu J, Li X, Jiang Y, Zhou W, Lu D (2006). "Expression analyses of 27 DNA repair genes in astrocytoma by TaqMan low-density array". Neurosci. Lett. 409 (2): 112–7. doi:10.1016/j.neulet.2006.09.038. PMID 17034947. 
  19. ^ a b Kubo N, Morita M, Nakashima Y, Kitao H, Egashira A, Saeki H, Oki E, Kakeji Y, Oda Y, Maehara Y (2014). "Oxidative DNA damage in human esophageal cancer: clinicopathological analysis of 8-hydroxydeoxyguanosine and its repair enzyme". Dis. Esophagus. 27 (3): 285–93. doi:10.1111/dote.12107. PMID 23902537. 
  20. ^ Gao T, Joyce BT, Liu L, Zheng Y, Dai Q, Zhang Z, Zhang W, Shrubsole MJ, Tao MH, Schwartz J, Baccarelli A, Hou L (2016). "DNA methylation of oxidative stress genes and cancer risk in the Normative Aging Study". Am J Cancer Res. 6 (2): 553–61. PMC 4859680free to read. PMID 27186424. 
  21. ^ Paz-Elizur T, Krupsky M, Blumenstein S, Elinger D, Schechtman E, Livneh Z (2003). "DNA repair activity for oxidative damage and risk of lung cancer". J. Natl. Cancer Inst. 95 (17): 1312–9. doi:10.1093/jnci/djg033. PMID 12953085. 
  22. ^ Paz-Elizur T, Ben-Yosef R, Elinger D, Vexler A, Krupsky M, Berrebi A, Shani A, Schechtman E, Freedman L, Livneh Z (2006). "Reduced repair of the oxidative 8-oxoguanine DNA damage and risk of head and neck cancer". Cancer Res. 66 (24): 11683–9. doi:10.1158/0008-5472.CAN-06-2294. PMID 17178863. 
  23. ^ Marsin S, Vidal AE, Sossou M, Ménissier-de Murcia J, Le Page F, Boiteux S, de Murcia G, Radicella JP (November 2003). "Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1". J. Biol. Chem. 278 (45): 44068–74. doi:10.1074/jbc.M306160200. PMID 12933815. 
  24. ^ Dantzer F, Luna L, Bjørås M, Seeberg E (June 2002). "Human OGG1 undergoes serine phosphorylation and associates with the nuclear matrix and mitotic chromatin in vivo". Nucleic Acids Res. 30 (11): 2349–57. doi:10.1093/nar/30.11.2349. PMC 117190free to read. PMID 12034821. 
  25. ^ Osorio A, Milne RL, Kuchenbaecker K, Vaclová T, Pita G, Alonso R, Peterlongo P, Blanco I, de la Hoya M, Duran M, Díez O, Ramón Y, Cajal T, Konstantopoulou I, Martínez-Bouzas C, Andrés Conejero R, Soucy P, McGuffog L, Barrowdale D, Lee A, Arver B, Rantala J, Loman N, Ehrencrona H, Olopade OI, Beattie MS, Domchek SM, Nathanson K, Rebbeck TR, Arun BK, Karlan BY, Walsh C, Lester J, John EM, Whittemore AS, Daly MB, Southey M, Hopper J, Terry MB, Buys SS, Janavicius R, Dorfling CM, van Rensburg EJ, Steele L, Neuhausen SL, Ding YC, Hansen TV, Jønson L, Ejlertsen B, Gerdes AM, Infante M, Herráez B, Moreno LT, Weitzel JN, Herzog J, Weeman K, Manoukian S, Peissel B, Zaffaroni D, Scuvera G, Bonanni B, Mariette F, Volorio S, Viel A, Varesco L, Papi L, Ottini L, Tibiletti MG, Radice P, Yannoukakos D, Garber J, Ellis S, Frost D, Platte R, Fineberg E, Evans G, Lalloo F, Izatt L, Eeles R, Adlard J, Davidson R, Cole T, Eccles D, Cook J, Hodgson S, Brewer C, Tischkowitz M, Douglas F, Porteous M, Side L, Walker L, Morrison P, Donaldson A, Kennedy J, Foo C, Godwin AK, Schmutzler RK, Wappenschmidt B, Rhiem K, Engel C, Meindl A, Ditsch N, Arnold N, Plendl HJ, Niederacher D, Sutter C, Wang-Gohrke S, Steinemann D, Preisler-Adams S, Kast K, Varon-Mateeva R, Gehrig A, Stoppa-Lyonnet D, Sinilnikova OM, Mazoyer S, Damiola F, Poppe B, Claes K, Piedmonte M, Tucker K, Backes F, Rodríguez G, Brewster W, Wakeley K, Rutherford T, Caldés T, Nevanlinna H, Aittomäki K, Rookus MA, van Os TA, van der Kolk L, de Lange JL, Meijers-Heijboer HE, van der Hout AH, van Asperen CJ, Gómez Garcia EB, Hoogerbrugge N, Collée JM, van Deurzen CH, van der Luijt RB, Devilee P, Olah E, Lázaro C, Teulé A, Menéndez M, Jakubowska A, Cybulski C, Gronwald J, Lubinski J, Durda K, Jaworska-Bieniek K, Johannsson OT, Maugard C, Montagna M, Tognazzo S, Teixeira MR, Healey S, Investigators K, Olswold C, Guidugli L, Lindor N, Slager S, Szabo CI, Vijai J, Robson M, Kauff N, Zhang L, Rau-Murthy R, Fink-Retter A, Singer CF, Rappaport C, Geschwantler Kaulich D, Pfeiler G, Tea MK, Berger A, Phelan CM, Greene MH, Mai PL, Lejbkowicz F, Andrulis I, Mulligan AM, Glendon G, Toland AE, Bojesen A, Pedersen IS, Sunde L, Thomassen M, Kruse TA, Jensen UB, Friedman E, Laitman Y, Shimon SP, Simard J, Easton DF, Offit K, Couch FJ, Chenevix-Trench G, Antoniou AC, Benitez J (2014). "DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers". PLoS Genet. 10 (4): e1004256. doi:10.1371/journal.pgen.1004256. PMC 3974638free to read. PMID 24698998. 

Further reading

  • Boiteux S, Radicella JP (2000). "The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis". Arch. Biochem. Biophys. 377 (1): 1–8. doi:10.1006/abbi.2000.1773. PMID 10775435. 
  • Park J, Chen L, Tockman MS, Elahi A, Lazarus P (2004). "The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk". Pharmacogenetics. 14 (2): 103–9. doi:10.1097/00008571-200402000-00004. PMID 15077011. 
  • Hung RJ, Hall J, Brennan P, Boffetta P (2005). "Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review". Am. J. Epidemiol. 162 (10): 925–42. doi:10.1093/aje/kwi318. PMID 16221808. 
  • Mirbahai L, Kershaw RM, Green RM, Hayden RE, Meldrum RA, Hodges NJ (2010). "Use of a molecular beacon to track the activity of base excision repair protein OGG1 in live cells". DNA Repair (Amst.). 9 (2): 144–52. doi:10.1016/j.dnarep.2009.11.009. PMID 20042377. 

External links

This article incorporates text from the public domain Pfam and InterPro IPR012904

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

8-oxoguanine DNA glycosylase, N-terminal domain Provide feedback

The presence of 8-oxoguanine residues in DNA can give rise to G-C to T-A transversion mutations. This enzyme is found in archaeal, bacterial and eukaryotic species, and is specifically responsible for the process which leads to the removal of 8-oxoguanine residues. It has DNA glycosylase activity ( EC: and DNA lyase activity ( EC: [1]. The region featured in this family is the N-terminal domain, which is organised into a single copy of a TBP-like fold. The domain contributes residues to the 8-oxoguanine binding pocket [2].

Literature references

  1. Bruner SD, Norman DP, Verdine GL; , Nature 2000;403:859-866.: Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. PUBMED:10706276 EPMC:10706276

  2. Bjoras M, Seeberg E, Luna L, Pearl LH, Barrett TE; , J Mol Biol 2002;317:171-177.: Reciprocal "flipping" underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase. PUBMED:11902834 EPMC:11902834

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR012904

The presence of 8-oxoguanine residues in DNA can give rise to G-C to T-A transversion mutations. This enzyme is found in archaeal, bacterial and eukaryotic species, and is specifically responsible for the process which leads to the removal of 8-oxoguanine residues. It has DNA glycosylase activity (EC) and DNA lyase activity (EC) [PUBMED:10706276]. The region featured in this family is the N-terminal domain, which is organised into a single copy of a TBP-like fold. The domain contributes residues to the 8-oxoguanine binding pocket [PUBMED:11902834].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan TBP-like (CL0407), which has the following description:

TBP is a transcription factor whose DNA binding fold is composed of a curved antiparallel beta-sheet [1]. This fold is also found in the N terminal region of DNA repair glycosylases. The N terminal domain of DNA glycosylase has only a single copy of the fold, whereas TBP contains a duplication of this fold [2-3].

The clan contains the following 4 members:



We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_29151 (release 14.0)
Previous IDs: none
Type: Family
Author: Fenech M
Number in seed: 60
Number in full: 889
Average length of the domain: 117.10 aa
Average identity of full alignment: 26 %
Average coverage of the sequence by the domain: 31.76 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 17690987 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.4 21.4
Trusted cut-off 21.8 21.4
Noise cut-off 20.8 21.2
Model length: 121
Family (HMM) version: 10
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


There is 1 interaction for this family. More...



For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the OGG_N domain has been found. There are 35 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...