Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 85  species 0  interactions 532  sequences 4  architectures

Family: Oleosin (PF01277)

Summary: Oleosin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Oleosin". More...

Oleosin Edit Wikipedia article

Symbol Oleosin
Pfam PF01277
Pfam clan CL0111
InterPro IPR000136

Oleosins are structural proteins found in vascular plant oil bodies and found in plant cells. Oil bodies are not considered organelles because they have a single layer membrane and lack the pre-requisite double layer membrane in order to be considered an organelle. They are found in plant parts with high oil content that undergo extreme desiccation as part of their maturation process, and help stabilize the bodies.[1]

Oleosins are proteins of 16 kDa to 24 kDa and are composed of three domains: an N-terminal hydrophilic region of variable length (from 30 to 60 residues); a central hydrophobic domain of about 70 residues and a C-terminal amphipathic region of variable length (from 60 to 100 residues). The central hydrophobic domain is proposed to be made up of beta-strand structure and to interact with the lipids. It is the only domain whose sequence is conserved.[2] Models show oleosins having a hairpin-like hydrophobic shape that is inserted inside the triacylglyceride (TAG), while the hydrophilic parts are left outside oil bodies.[3]

Oleosins have been found on oil bodies of seeds, tapetum cells, and pollen but not fruits. Instead of a stabilizer of oil bodies, oleosins are believed to be involved in water-uptaking of pollen on stigma.

Use in Purification of Recombinant Protein

Oleosins provide an easy way of purifying proteins which have been produced recombinantly in plants. If the protein is made as a fusion protein with oleosin and a protease recognition site is incorporated between them, the fusion protein will sit in the membrane of the oil body, which can be easily isolated by centrifugation. The oil droplets can then be mixed with aqueous medium again, and oleosin cleaved from the protein of interest. Centrifugation will cause two phases to separate again, and the aqueous medium now contains the purified protein.


  1. ^ Hsieh, Kai; Anthony H.C. Huang (September 2005). "Lipid-rich tapetosomes in Brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum". The Plant Journal 43 (6): 889–99. doi:10.1111/j.1365-313X.2005.02502.x. PMC 1867322. PMID 17307923. 
  2. ^ Tzen JT, Lie GC, Huang AH (August 1992). "Characterization of the charged components and their topology on the surface of plant seed oil bodies". J. Biol. Chem. 267 (22): 15626–34. PMID 1639802. 
  3. ^ oleosin

This article incorporates text from the public domain Pfam and InterPro IPR000136

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Oleosin Provide feedback

No Pfam abstract.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000136

Oleosins [PUBMED:1989697] are the proteinaceous components of plants' lipid storage bodies called oil bodies. Oil bodies are small droplets (0.2 to 1.5 mu-m in diameter) containing mostly triacylglycerol that are surrounded by a phospholipid/ oleosin annulus. Oleosins may have a structural role in stabilising the lipid body during dessication of the seed, by preventing coalescence of the oil. They may also provide recognition signals for specific lipase anchorage in lipolysis during seedling growth. Oleosins are found in the monolayer lipid/ water interface of oil bodies and probably interact with both the lipid and phospholipid moieties. Oleosins are proteins of 16 Kd to 24 Kd and are composed of three domains: an N-terminal hydrophilic region of variable length (from 30 to 60 residues); a central hydrophobic domain of about 70 residues and a C-terminal amphipathic region of variable length (from 60 to 100 residues). The central hydrophobic domain is proposed to be made up of beta-strand structure and to interact with the lipids [PUBMED:1639802]. It is the only domain whose sequence is conserved.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Family
Author: Finn RD, Bateman A
Number in seed: 60
Number in full: 532
Average length of the domain: 103.10 aa
Average identity of full alignment: 36 %
Average coverage of the sequence by the domain: 54.44 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 80369284 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 24.4 24.4
Trusted cut-off 24.7 24.6
Noise cut-off 24.3 24.3
Model length: 113
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.