Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 184  species 0  interactions 1227  sequences 44  architectures

Family: PDR_CDR (PF06422)

Summary: CDR ABC transporter

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

CDR ABC transporter Provide feedback

Corresponds to a region of the PDR/CDR subgroup of ABC transporters comprising extracellular loop 3, transmembrane segment 6 and linker region.

Literature references

  1. Gauthier C, Weber S, Alarco AM, Alqawi O, Daoud R, Georges E, Raymond M; , Antimicrob Agents Chemother 2003;47:1543-1554.: Functional Similarities and Differences between Candida albicans Cdr1p and Cdr2p Transporters. PUBMED:12709320 EPMC:12709320


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR010929

ABC transporters belong to the ATP-Binding Cassette (ABC) superfamily, which uses the hydrolysis of ATP to energise diverse biological systems. ABC transporters minimally consist of two conserved regions: a highly conserved ATP binding cassette (ABC) and a less conserved transmembrane domain (TMD). These can be found on the same protein or on two different ones. Most ABC transporters function as a dimer and therefore are constituted of four domains, two ABC modules and two TMDs.

ABC transporters are involved in the export or import of a wide variety of substrates ranging from small ions to macromolecules. The major function of ABC import systems is to provide essential nutrients to bacteria. They are found only in prokaryotes and their four constitutive domains are usually encoded by independent polypeptides (two ABC proteins and two TMD proteins). Prokaryotic importers require additional extracytoplasmic binding proteins (one or more per systems) for function. In contrast, export systems are involved in the extrusion of noxious substances, the export of extracellular toxins and the targeting of membrane components. They are found in all living organisms and in general the TMD is fused to the ABC module in a variety of combinations. Some eukaryotic exporters encode the four domains on the same polypeptide chain [PUBMED:9873074].

The ABC module (approximately two hundred amino acid residues) is known to bind and hydrolyse ATP, thereby coupling transport to ATP hydrolysis in a large number of biological processes. The cassette is duplicated in several subfamilies. Its primary sequence is highly conserved, displaying a typical phosphate-binding loop: Walker A, and a magnesium binding site: Walker B. Besides these two regions, three other conserved motifs are present in the ABC cassette: the switch region which contains a histidine loop, postulated to polarise the attaching water molecule for hydrolysis, the signature conserved motif (LSGGQ) specific to the ABC transporter, and the Q-motif (between Walker A and the signature), which interacts with the gamma phosphate through a water bond. The Walker A, Walker B, Q-loop and switch region form the nucleotide binding site [PUBMED:11421269, PUBMED:1282354, PUBMED:9640644].

The 3D structure of a monomeric ABC module adopts a stubby L-shape with two distinct arms. ArmI (mainly beta-strand) contains Walker A and Walker B. The important residues for ATP hydrolysis and/or binding are located in the P-loop. The ATP-binding pocket is located at the extremity of armI. The perpendicular armII contains mostly the alpha helical subdomain with the signature motif. It only seems to be required for structural integrity of the ABC module. ArmII is in direct contact with the TMD. The hinge between armI and armII contains both the histidine loop and the Q-loop, making contact with the gamma phosphate of the ATP molecule. ATP hydrolysis leads to a conformational change that could facilitate ADP release. In the dimer the two ABC cassettes contact each other through hydrophobic interactions at the antiparallel beta-sheet of armI by a two-fold axis [PUBMED:11988180, PUBMED:11470432, PUBMED:11402022, PUBMED:9872322, PUBMED:11080142, PUBMED:11532960].

The ATP-Binding Cassette (ABC) superfamily forms one of the largest of all protein families with a diversity of physiological functions [PUBMED:9873074]. Several studies have shown that there is a correlation between the functional characterisation and the phylogenetic classification of the ABC cassette [PUBMED:9873074, PUBMED:11421270]. More than 50 subfamilies have been described based on a phylogenetic and functional classification [PUBMED:9873074, PUBMED:11421269, PUBMED:11421270]; (for further information see http://www.tcdb.org/tcdb/index.php?tc=3.A.1).

In yeast, the PDR and CDR ABC transporters display extensive sequence homology, and confer resistance to several anti-fungal compounds by actively transporting their substrates out of the cell. These transporters have two homologous halves, each with an N-terminal intracellular hydrophilic region that contains an ATP-binding site, followed by a C-terminal membrane-associated region containing six transmembrane segments [PUBMED:12709320]. This entry represents a domain of the PDR/CDR ABC transporter comprising extracellular loop 3, transmembrane segment 6 and a linker region.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan ABC-2 (CL0181), which has the following description:

These families are similar to the ABC-2 transporter subfamily, as described in [1] (Pfam:PF01061). Members of this family are involved in drug transport and resistance. CcmB protein family (Pfam:PF03379) members are also transporters; they are required for haem export into the periplasm [2].

The clan contains the following 10 members:

ABC2_membrane ABC2_membrane_2 ABC2_membrane_3 ABC2_membrane_4 ABC2_membrane_5 ABC2_membrane_6 CcmB DUF3526 DUF3533 PDR_CDR

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(167)
Full
(1227)
Representative proteomes NCBI
(1245)
Meta
(0)
RP15
(239)
RP35
(480)
RP55
(779)
RP75
(900)
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(167)
Full
(1227)
Representative proteomes NCBI
(1245)
Meta
(0)
RP15
(239)
RP35
(480)
RP55
(779)
RP75
(900)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(167)
Full
(1227)
Representative proteomes NCBI
(1245)
Meta
(0)
RP15
(239)
RP35
(480)
RP55
(779)
RP75
(900)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_1005 (release 8.0)
Previous IDs: none
Type: Family
Author: Gauthier C, Studholme DJ
Number in seed: 167
Number in full: 1227
Average length of the domain: 97.70 aa
Average identity of full alignment: 26 %
Average coverage of the sequence by the domain: 7.84 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.5 20.5
Trusted cut-off 20.6 20.5
Noise cut-off 20.4 20.4
Model length: 103
Family (HMM) version: 7
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.