Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
90  structures 284  species 11  interactions 24995  sequences 2546  architectures

Family: EGF (PF00008)

Summary: EGF-like domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "EGF-like domain". More...

EGF-like domain Edit Wikipedia article

EGF-like domain
PDB 1hre EBI.jpg
Structure of the epidermal growth factor-like domain of heregulin-alpha.[1]
Identifiers
Symbol EGF
Pfam PF00008
Pfam clan CL0001
InterPro IPR006209
PROSITE PDOC00021
SCOP 1apo
SUPERFAMILY 1apo
OPM protein 1dan
EGF-like domain
PDB 1jv2 EBI.jpg
crystal structure of the extracellular segment of integrin alphavbeta3
Identifiers
Symbol EGF_2
Pfam PF07974
Pfam clan CL0001
InterPro IPR013111

The EGF-like domain is an evolutionary conserved protein domain, which derives its name from the epidermal growth factor where it was first described. It comprises about 30 to 40 amino-acid residues and has been found in a large number of mostly animal proteins.[2][3] Most occurrences of the EGF-like domain are found in the extracellular domain of membrane-bound proteins or in proteins known to be secreted. An exception to this is the prostaglandin-endoperoxide synthase. The EGF-like domain includes 6 cysteine residues which in the epidermal growth factor have been shown to form 3 disulfide bonds. The structures of 4-disulfide EGF-domains have been solved from the laminin and integrin proteins. The main structure of EGF-like domains is a two-stranded β-sheet followed by a loop to a short C-terminal, two-stranded β-sheet. These two β-sheets are usually denoted as the major (N-terminal) and minor (C-terminal) sheets.[4] EGF-like domains frequently occur in numerous tandem copies in proteins: these repeats typically fold together to form a single, linear solenoid domain block as a functional unit.

Subtypes

Despite the similarities of EGF-like domains, distinct domain subtypes have been identified.[5] The two main proposed types of EGF-like domains are the human EGF-like (hEGF) domain and the complement C1r-like (cEGF) domain,[4] which was first identified in the human complement protease C1r.[5] C1r is a highly specific serine protease initiating the classical pathway of complement activation during immune response.[6] Both the hEGF- and cEGF-like domains contain three disulfides and derive from a common ancestor that carried four disulfides of which one was lost during evolution. Furthermore, cEGF-like domains can be divided in two subtypes (1 and 2) whereas all hEGF-like domains belong to one subtype.[4]

The differentiation of cEGF-like and hEGF-like domains and their subtypes is based on structural features and the connectivity of their disulfide bonds. cEGF- and hEGF-like domains have a distinct shape and orientation of the minor sheet and one C-terminal half-cystine has a different position. The lost cysteines of the common ancestor differ between cEGF- and hEGF-like domains and hence these types differ in their disulfide linkages. The differentiation of cEGF into subtype 1 and 2, which probably occurred after its split from hEGF, is based on different residue numbers between the distinct half-cystines. An N-terminal located calcium binding motif can be found in hEGF- as well as in cEGF-like domains and is therefore not suitable to tell them apart.[4]

hEGF- and cEGF-like domains also contain post-translational modifications, which are often unusual and differ between hEGF- and cEGF-like domains. These post-translational modifications include O-glycosylations, mostly O-fucose modifications, and β-hydroxylation of aspartate and asparagine residues. O-fucose modifications have only been detected in hEGF-like domains and they are important for the proper folding of the hEGF-like domain. β-Hydroxylation appears in hEGF- and cEGF-like domains, the former is hydroxylated on an aspartic acid while the latter is hydroxylated on an asparagine residue. The biological role of this post-translational modification is unclear,[4] but mice with a knockout of the aspartyl-β-hydroxylation enzyme show developmental defects.[7]

Proteins containing EGF-like domains are widespread and can be exclusively hEGF- or cEGF-like, or contain a mix of both. In many mitogenic and developmental proteins such as Notch and Delta the EGF-like domains are only of the hEGF type. Other proteins contain only cEGF such as thrombomodulin and the LDL-receptor. In mixed EGF-proteins the hEGF- and cEGF-like domains are grouped together with the hEGFs always being N-terminal of the cEGFs. Such proteins are involved in blood coagulation or are components of the extracellular matrix like fibrillin and LTBP-1 (Latent-transforming growth factor beta-binding protein 1). In addition to the aforementioned three disulfide hEGF- and cEGF-like types, there are proteins carrying a four-disulfide EGF-like domain like laminin and integrin.[4]

The two main EGF-like domain subtypes hEGF and cEGF are not just distinct in their structure and conformation but also have different functions. This hypothesis is substantiated by research on LTBP-1. LTBP-1 anchors the transforming growth factor β (TGF-β) to the extracellular matrix. hEGF-like domains play a role in targeting the LTBP-1/TGF-β assembly to the extracellular matrix. Once attached to the extracellular matrix, TGF-β dissociates from hEGF subunits to allow its subsequent activation. cEGF-like domains seem to play an unspecific role in this activation by promoting the cleavage of LTBP-1 from TGF-β by various proteases.[4]

In conclusion, although distinct EGF-like domains are grouped, subtypes can be clearly separated by their sequence, conformation and, most importantly, their function.

Role in the immune system and apoptosis

Selectins, a group of proteins that are involved in leukocyte rolling towards a source of inflammation, contain an EGF-like domain along with a lectin domain and short consensus repeats (SCRs).[8][9] The functions of the EGF-like domain vary between different selectin types. Kansas and co-workers were able to show that the EGF-like domain is not required for maximal cellular adhesion in L-selectin (expressed on lymphocytes). However, it is involved in both ligand recognition and adhesion in P-selectin (expressed on platelets) and may also be involved in protein-protein interactions. It has been suggested that the interactions between lectin domains and carbohydrate ligands might be calcium-dependent.[8]

Interestingly, immature human dendritic cells appear to require interactions with the EGF-like domains of selectins during their maturation process. Blocking of this interaction with monoclonal anti-EGF-like domain antibodies prevents dendritic cell maturation. The immature cells fail to activate T-cells and produce less interleukin 12 than wild-type dendritic cells.[10]

Phan et al. could show that the artificial insertion of an N-glycosylation site into the EGF-like domains in P- and L-selectins increased the affinities of selectins to their ligands and led to slower rolling.[9] Therefore, EGF-like domains seem to play a crucial role in leukocyte movements towards inflammatory stimuli.

The EGF-like domain is also part of laminins, an important group of extracellular proteins. The EGF-like domains are usually masked in intact membranes, but become exposed when the membrane is destroyed, e.g. during inflammation, thereby stimulating membrane growth and restoring damaged membrane parts.[11]

Moreover, the EGF-like domain repeats of the stabilin-2 domain have been shown to specifically recognize and bind apoptotic cells, probably by recognizing phosphatidylserine, an apoptotic cell marker (“eat me-signal”).[12] Park et al. further demonstrated that the domains are able to competitively impair recognition of apoptotic cells by macrophages.

In conclusion, the EGF-like domain appears to play a vital role in immune responses as well as in eliminating dead cells in the organism.

Calcium-binding

Calcium-binding EGF-like domains (cbEGF-like domains) play a seminal role in diseases such as the Marfan syndrome[13] or the X-chromosome linked hemorrhagic disorder hemophilia B [14] and are among the most abundant extracellular calcium-binding domains.[15] Importantly, cbEGF- like domains impart specific functions to a variety of proteins in the blood clotting cascade. Examples include the coagulation factors VII, IX and X, protein C and its cofactor protein S.[15]

Calcium-binding EGF-like domains are typically composed of 45 amino acids, arranged as two antiparallel beta sheets.[15] Several cysteine residues within this sequence form disulfide bridges.

Interestingly, cbEGF-like domains show no significant structural deviations from EGF-like domains, however, as the name suggests, cbEGF-like domains bind a single calcium ion. The binding affinity to calcium varies widely and often depends on adjacent domains.[15] The consensus motif for calcium binding is Asp-Leu/Ile-Asp-Gln-Cys. Coordination of calcium strongly correlates with an unusual posttranslational modification of cbEGF-like domains: either an asparagine or aspartate is beta-hydroxylated giving rise to erythro-beta-hydroxyasparagine (Hyn) or erythro-beta-hydroxyaspartic acid (Hya), respectively. Hya can be found in the N-terminal cbEGF module (see below) of factors IX, X, and protein C. The Hyn modification appears to be more prevalent than Hya and has been shown to occur in fibrillin-1, an extracellular matrix protein.[16] Both modifications are catalyzed by the dioxygenase Asp/Asn-beta-hydroxylase,[17] and are unique to EGF domains in eukaryotes.[15]

Further posttranslational modifications have been reported. Glycosylation in the form of O-linked di- or trisaccharides may occur at a serine residue between the first two cysteines of blood coagulation factors VII and IX.[18][19][20] Factor VII exhibits an O-linked fucose at Ser60.[20]

Importantly, multiple cbEGF domains are often connected by one or two amino acids to form larger, repetitive arrays, here referred to as 'cbEGF modules'. In the blood clotting cascade, coagulation factors VII, IX and X, and protein C contain a tandem of two cbEGF modules, whereas protein S has four. Impressivley, in fibrillin-1 and fibrillin-2, 43 cbEGF modules have been found.[21] The modularity of these proteins adds complexity to protein-protein but also module-module interaction. In factors VII, IX and X, the two cbEGF modules are preceded by an N-terminal gamma-carboxyglutamic acid (Gla) containing module (the Gla module).[15] In vitro studies on the Gla-cbEGF tandem isolated from factor X revealed a Kd-value of 0.1 mM for calcium binding [18] with the free calcium blood plasma concentrations being approximately 1.2 mM. Surprisingly, in the absence of the Gla module, the cbEGF module exhibits a Kd-value of 2.2 mM for calcium.[17] Thus, the presence of the Gla module increases calcium affinity 20-fold. Similarly, the activity of Gla and Serine protease modules are modified by the cbEGF modules. In the absence of calcium, the Gla and cbEGF modules are highly mobile. As the cbEGF module associates with calcium, however, movement of the Gla module is significantly restricted because the cbEGF module now adopts a conformation that locks the neighboring Gla module in a fixed position.[22][23] Therefore, calcium coordination induces conformational changes which, in turn, might modulate enzymatic activity.

Impaired coordination of calcium can result in serious disorders. Defective calcium binding to coagulation factor IX contributes to the development of hemophilia B. Individuals afflicted with this hereditary disease tend to develope hemorrhages, potentially leading to life-threatening conditions. The cause of hemophilia B is decreased activity or deficiency of blood coagulation factor IX. Point mutations resulting in decreased affinity of factor IX to calcium are thought to be implicated in this bleeding disorder.[15] On a molecular basis, it appears that hemophilia B can be the result of an impaired ability to localize the Gla module efficiently, as it usually occurs after calcium coordination by the cbEGF module in fully functional factor IX.[15] This defect is thought to impair the biological function of factor IX. A similar problem occurs in patients suffering from hemophilia B and carrying a mutation (Glu78Lys) in factor IX that prevents interaction of the two cbEGF modules with one another.[15] Conversely, in healthy individuals, Glu78 in the first cbEGF-module contacts Arg94 in the second cbEGF module and thereby aligns both modules.[24] Thus, domain-domain interactions (partially facilitated by calcium coordination) are crucial for the catalytic activity of proteins involved in the blood-clotting cascade.

Proteins containing this domain

Below is a list of human proteins containing the EGF-like domain:

See also

References

  1. ^ Nagata K, Kohda D, Hatanaka H, et al. (August 1994). "Solution structure of the epidermal growth factor-like domain of heregulin-alpha, a ligand for p180erbB-4". EMBO J. 13 (15): 3517–23. PMC 395255. PMID 8062828. 
  2. ^ Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID, Handford PA (May 1996). "Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders". Cell 85 (4): 597–605. doi:10.1016/S0092-8674(00)81259-3. PMID 8653794. 
  3. ^ Bork P, Downing AK, Kieffer B, Campbell ID (May 1996). "Structure and distribution of modules in extracellular proteins". Q. Rev. Biophys. 29 (2): 119–67. doi:10.1017/S0033583500005783. PMID 8870072. 
  4. ^ a b c d e f g Wouters MA, Rigoutsos I, Chu CK, Feng LL, Sparrow DB, Dunwoodie SL (2005). "Evolution of distinct EGF domains with specific functions". Protein Science 14 (4): 1091–103. doi:10.1110/ps.041207005. PMC 2253431. PMID 15772310. 
  5. ^ a b Bersch B, Hernandez J-F, Marion D, Arlaud GJ (1998). "Solution Structure of the Epidermal Growth Factor (EGF)-like Module of Human Complement Protease C1r, an Atypical Member of the EGF Family". Biochemistry 37 (5): 1204–14. doi:10.1021/bi971851v. PMID 9477945. 
  6. ^ Circolo A, Garnier G, Volanakis JE (2003). "A novel murine complement-related gene encoding a C1r-like serum protein". Molecular Immunology 39 (14): 899–906. doi:10.1016/S0161-5890(02)00283-3. PMID 12686506. 
  7. ^ Stenflo J, Ohlin AK, Owen WG, Schneider WJ (1988). "beta-Hydroxyaspartic acid or beta-hydroxyasparagine in bovine low density lipoprotein receptor and in bovine thrombomodulin". Journal of Biological Chemistry 263 (1): 21–24. PMID 2826439. 
  8. ^ a b Kansas GS, Saunders KB, Ley K, et al (1994). "A role for the epidermal growth factor-like domain of P-selectin in ligand recognition and cell adhesion". J Cell Biol 124 (4): 609–18. doi:10.1083/jcb.124.4.609. PMC 2119911. PMID 7508943. 
  9. ^ a b Phan UT, Waldron TT, Springer TA (2006). "Remodeling of the lectin-EGF-like domain interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force". Nat Immunol 7 (8): 883–9. doi:10.1038/ni1366. PMC 1764822. PMID 16845394. 
  10. ^ Zhou T, Zhang Y, Sun G, et al. (2006). "Anti-P-selectin lectin-EGF domain monoclonal antibody inhibits the maturation of human immature dendritic cells.". Exp Mol Pathol. 80 (2): 171–6. doi:10.1016/j.yexmp.2005.10.004. PMID 16413535. 
  11. ^ Löffler, G; Petrides, PE; Heinrich, PC (1997). Biochemie und Pathobiochemie (5th ed.). Berlin, Heidelberg: Springer-Verlag. p. 747. ISBN 3-540-59006-4. 
  12. ^ Park SY, Kim SY, Jung MY et al. (2008). "Epidermal growth factor-like domain repeat of tabilin-2 recognizes phosphatidylserine during cell corpse clearance.". Mol Cell Biol. 28 (17): 5288–98. doi:10.1128/MCB.01993-07. PMC 2519725. PMID 18573870. 
  13. ^ Handford PA, Downing AK, Rao Z, Hewett DR, Sykes BC, Kielty CM (1991). "The calcium binding properties and molecular organization of epidermal growth factor-like domains in human fibrillin-1.". J. Biol. Chem. 270 (12): 6751–6. PMID 7896820. 
  14. ^ Handford PA, Mayhew M, Baron M, Winship PR, Campbell ID, Brownlee GG (1991). "Key residues involved in calcium-binding motifs in EGF-like domains.". Nature 351 (6322): 164–7. doi:10.1038/351164a0. PMID 2030732. 
  15. ^ a b c d e f g h i Stenflo J, Stenberg Y, Muranyi A (2000). "Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions". Biochimica et Biophysica Acta 1477 (1-2): 51–63. doi:10.1016/s0167-4838(99)00262-9. PMID 10708848. 
  16. ^ Glanville RW, Qian RQ, McClure DW, Maslen CL, et al. (1994). "Calcium binding, hydroxylation, and glycosylation of the precursor epidermal growth factor-like domains of fibrillin-1, the Marfan gene protein.". J. Biol. Chem. 269 (43): 26630–4. PMID 7929395. 
  17. ^ a b Jia S, VanDusen WJ, Diehl RE, et al. (1992). "cDNA Cloning and Expression of Bovine Aspartyl (Asparaginyl) Beta-Hydroxylase.". J. Biol. Chem. 267 (20): 14322–7. PMID 1378441. 
  18. ^ a b Valcarce C, Selander-Sunnerhagen M, Tämlitz AM, Drakenberg T, Björk I, Stenflo J (1996). "Calcium Affinity of the NH2-terminal Epidermal Growth Factor-like Module of Factor X". J. Biol. Chem. 268 (35): 26673–8. PMID 8253800. 
  19. ^ Nishimura H, Kawabata S, Kisiel W, et al. (1989). "Identification of a disaccharide (Xyl-Glc) and a trisaccharide (Xyl2-Glc) O-glycosidically linked to a serine residue in the first epidermal growth factor-like domain of human factors VII and IX and protein Z and bovine protein Z". J. Biol. Chem. 264 (34): 20320–5. PMID 2511201. 
  20. ^ a b Bjoern S, Foster D, Thim L, et al. (1991). "Human Plasma and Recombinant Factor VII.". Biol. Chem. 266 (17): 11051–7. PMID 1904059. 
  21. ^ Piha-Gossack A, Sossin W, Reinhardt DT, et al. (2012). "The evolution of extracellular fibrillins and their functional domains". PLoS ONE 7 (3): 33560. doi:10.1371/journal.pone.0033560. PMC 3306419. PMID 22438950. 
  22. ^ Sunnerhagen M, Forsen S, Hoffren A, Drakenberg T, Teleman O, Stenflo J (1995). "Structure of the Ca(2+)-free Gla domain sheds light on membrane binding of blood coagulation proteins". Nature Structural & Molecular Biology 2 (6): 504–9. doi:10.1038/nsb0695-504. PMID 7664114. 
  23. ^ Sunnerhagen M, Olah GA, Stenflo J, Forsen S, Drakenberg T, Trewhella J (1996). "The relative orientation of Gla and EGF domains in coagulation factor X is altered by Ca2+ binding to the first EGF domain. A combined NMR-small angle X-ray scattering study". Biochem 35 (36): 11547–59. doi:10.1021/bi960633j. PMID 8794734. 
  24. ^ Christophe OD, Lenting PJ, Kolkman JA, Brownlee GG, Mertens K (1988). "Blood coagulation factor IX residues Glu78 and Arg94 provide a link between both epidermal growth factor-like domains that is crucial in the interaction with factor VIII light chain.". J. Biol. Chem. 273 (1): 222–7. doi:10.1074/jbc.273.1.222. PMID 9417068. 

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

EGF-like domain Provide feedback

There is no clear separation between noise and signal. PF00053 is very similar, but has 8 instead of 6 conserved cysteines. Includes some cytokine receptors. The EGF domain misses the N-terminus regions of the Ca2+ binding EGF domains (this is the main reason of discrepancy between swiss-prot domain start/end and Pfam). The family is hard to model due to many similar but different sub-types of EGF domains. Pfam certainly misses a number of EGF domains.

Literature references

  1. Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID, Handford PA; , Cell 1996;85:597-605.: Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. PUBMED:8653794 EPMC:8653794

  2. Bork P, Downing AK, Kieffer B, Campbell ID; , Q Rev Biophys 1996;29:119-167.: Structure and distribution of modules in extracellular proteins. PUBMED:8870072 EPMC:8870072


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR006209

A sequence of about thirty to forty amino-acid residues long found in the sequence of epidermal growth factor (EGF) has been shown [PUBMED:, PUBMED:3282918, PUBMED:6607417, PUBMED:2288911, PUBMED:6334307] to be present, in a more or less conserved form, in a large number of other, mostly animal proteins. The list of proteins currently known to contain one or more copies of an EGF-like pattern is large and varied. The functional significance of EGF domains in what appear to be unrelated proteins is not yet clear. However, a common feature is that these repeats are found in the extracellular domain of membrane-bound proteins or in proteins known to be secreted (exception: prostaglandin G/H synthase). The EGF domain includes six cysteine residues which have been shown (in EGF) to be involved in disulphide bonds. The main structure is a two-stranded beta-sheet followed by a loop to a C-terminal short two-stranded sheet. Subdomains between the conserved cysteines vary in length.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan EGF (CL0001), which has the following description:

Members of this clan all belong to the EGF superfamily. This particular superfamily is characterised as having least 6 cysteines residues. These cysteine form disulphide bonds, in the order 1-3, 2-4, 5-6, which are essential for the stability of the EGF fold. These disulphide bonds are stacked in a ladder-like arrangement. The Laminin EGF family is distinguished by having an an additional disulphide bond. The function of the domains within this family remains unclear, but they are though to largely perform a structural role. More often than not, there domains are arranged a tandem repeats in extracellular proteins.

The clan contains the following 13 members:

cEGF DSL EGF EGF_2 EGF_3 EGF_alliinase EGF_CA EGF_MSP1_1 FOLN FXa_inhibition hEGF Laminin_EGF Tme5_EGF_like

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(71)
Full
(24995)
Representative proteomes NCBI
(25121)
Meta
(202)
RP15
(6681)
RP35
(7484)
RP55
(11311)
RP75
(15241)
Jalview View  View  View  View  View  View  View  View 
HTML View               
PP/heatmap 1              
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(71)
Full
(24995)
Representative proteomes NCBI
(25121)
Meta
(202)
RP15
(6681)
RP35
(7484)
RP55
(11311)
RP75
(15241)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(71)
Full
(24995)
Representative proteomes NCBI
(25121)
Meta
(202)
RP15
(6681)
RP35
(7484)
RP55
(11311)
RP75
(15241)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Swissprot_feature_table
Previous IDs: none
Type: Domain
Author: Bateman A, Sonnhammer ELL
Number in seed: 71
Number in full: 24995
Average length of the domain: 32.00 aa
Average identity of full alignment: 40 %
Average coverage of the sequence by the domain: 10.56 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.5 21.5
Trusted cut-off 21.5 21.5
Noise cut-off 21.4 21.4
Model length: 32
Family (HMM) version: 22
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 11 interactions for this family. More...

Gla Trypsin Recep_L_domain CUB An_peroxidase TSP_3 EGF_CA Lectin_C EGF Ldl_recept_a TSP_C

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the EGF domain has been found. There are 90 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...