Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
378  structures 7847  species 9  interactions 40217  sequences 476  architectures

Family: HSP70 (PF00012)

Summary: Hsp70 protein

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Hsp70". More...

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Hsp70 protein Provide feedback

Hsp70 chaperones help to fold many proteins. Hsp70 assisted folding involves repeated cycles of substrate binding and release. Hsp70 activity is ATP dependent. Hsp70 proteins are made up of two regions: the amino terminus is the ATPase domain and the carboxyl terminus is the substrate binding region.

Literature references

  1. Bukau B, Horwich AL; , Cell 1998;92:351-366.: The Hsp70 and Hsp60 chaperone machines. PUBMED:9476895 EPMC:9476895


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR013126

Heat shock proteins, Hsp70 chaperones help to fold many proteins. Hsp70 assisted folding involves repeated cycles of substrate binding and release. Hsp70 activity is ATP dependent. Hsp70 proteins are made up of two regions: the amino terminus is the ATPase domain and the carboxyl terminus is the substrate binding region [PUBMED:9476895].

Hsp70 proteins have an average molecular weight of 70kDa [PUBMED:2686623, PUBMED:2944601, PUBMED:3282176]. In most species, there are many proteins that belong to the Hsp70 family. Some of these are only expressed under stress conditions (strictly inducible), while some are present in cells under normal growth conditions and are not heat-inducible (constitutive or cognate) [PUBMED:2143562, PUBMED:2841196]. Hsp70 proteins can be found in different cellular compartments(nuclear, cytosolic, mitochondrial, endoplasmic reticulum, for example).

This entry represents the Hsp70 family, and includes chaperone protein DnaK and luminal-binding proteins. It also includes heat shock protein 110 (Hsp110) from Caenorhabditis elegans which helps prevent the aggregation of denatured proteins in neurons [PUBMED:19165329]. Also included is endoplasmic reticulum (ER) chaperone BiP (HSPA5) which is important for protein folding and quality control in the ER [PUBMED:26655470].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Actin_ATPase (CL0108), which has the following description:

The actin-like ATPase domain forms an alpha/beta canonical fold. The domain can be subdivided into 1A, 1B, 2A and 2B subdomains. Subdomains 1A and 1B share the same RNAseH-like fold (a five-stranded beta-sheet decorated by a number of alpha-helices). Domains 1A and 2A are conserved in all members of this superfamily, whereas domain 1B and 2B have a variable structure and are even missing from some homologues [1]. Within the actin-like ATPase domain the ATP-binding site is highly conserved. The phosphate part of the ATP is bound in a cleft between subdomains 1A and 2A, whereas the adenosine moiety is bound to residues from domains 2A and 2B[1].

The clan contains the following 34 members:

Acetate_kinase Actin Actin_micro ALP_N AnmK BcrAD_BadFG Carbam_trans_N DDR DUF1464 DUF2229 EutA FGGY_C FGGY_N FtsA Fumble GDA1_CD39 Glucokinase Hexokinase_1 Hexokinase_2 HGD-D HSP70 Hydant_A_N Hydantoinase_A HypF_C MreB_Mbl MutL Pan_kinase PilM_2 Ppx-GppA RACo_C_ter ROK StbA T2SSL TsaD

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(27)
Full
(40217)
Representative proteomes UniProt
(140912)
NCBI
(204106)
Meta
(9708)
RP15
(6904)
RP35
(19365)
RP55
(34639)
RP75
(54497)
Jalview View  View  View  View  View  View  View  View  View 
HTML View                 
PP/heatmap 1                

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(27)
Full
(40217)
Representative proteomes UniProt
(140912)
NCBI
(204106)
Meta
(9708)
RP15
(6904)
RP35
(19365)
RP55
(34639)
RP75
(54497)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(27)
Full
(40217)
Representative proteomes UniProt
(140912)
NCBI
(204106)
Meta
(9708)
RP15
(6904)
RP35
(19365)
RP55
(34639)
RP75
(54497)
Raw Stockholm Download   Download   Download   Download   Download   Download       Download  
Gzipped Download   Download   Download   Download   Download   Download       Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Family
Sequence Ontology: SO:0100021
Author: Bateman A , Sonnhammer ELL
Number in seed: 27
Number in full: 40217
Average length of the domain: 408.30 aa
Average identity of full alignment: 29 %
Average coverage of the sequence by the domain: 80.47 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.6 20.6
Trusted cut-off 20.6 20.6
Noise cut-off 20.5 20.5
Model length: 599
Family (HMM) version: 21
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 9 interactions for this family. More...

HSP70 GrpE BAG GrpE TPR_2 DnaJ TPR_11 Apidaecin Bombesin

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the HSP70 domain has been found. There are 378 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...