Summary: Methyl-accepting chemotaxis protein (MCP) signalling domain
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "Methyl-accepting chemotaxis protein". More...
Methyl-accepting chemotaxis protein Edit Wikipedia article
Methyl-accepting Chemotaxis Protein (MCP) is a transmembrane sensor protein of bacteria. Use of the MCP allows bacteria to detect concentrations of molecules in the extracellular matrix so that the bacteria may smooth swim or tumble accordingly. If the bacteria detects rising levels of attractants (nutrients) or declining levels of repellents (toxins), the bacteria will continue swimming forward, or smooth swimming. If the bacteria detects declining levels of attractants or rising levels of repellents, the bacteria will tumble and re-orient itself in a new direction. In this manner, a bacteria may swim towards nutrients and away from toxins.
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Methyl-accepting chemotaxis protein (MCP) signalling domain Provide feedback
This domain is thought to transduce the signal to CheA since it is highly conserved in very diverse MCPs.
Literature references
-
Hanlon DW, Marquez-Magana LM, Carpenter PB, Chamberlin MJ, Ordal GW; , J Biol Chem 1992;267:12055-12060.: Sequence and characterization of Bacillus subtilis CheW. PUBMED:1601874 EPMC:1601874
Internal database links
External database links
PRINTS: | PR00260 |
PROSITE: | PDOC00465 |
SCOP: | 1qu7 |
This tab holds annotation information from the InterPro database.
InterPro entry IPR004089
Methyl-accepting chemotaxis proteins (MCPs) are a family of bacterial receptors that mediate chemotaxis to diverse signals, responding to changes in the concentration of attractants and repellents in the environment by altering swimming behaviour [ PUBMED:16359703 ]. Environmental diversity gives rise to diversity in bacterial signalling receptors, and consequently there are many genes encoding MCPs [ PUBMED:17299051 ]. For example, there are four well-characterised MCPs found in Escherichia coli: Tar (taxis towards aspartate and maltose, away from nickel and cobalt), Tsr (taxis towards serine, away from leucine, indole and weak acids), Trg (taxis towards galactose and ribose) and Tap (taxis towards dipeptides).
MCPs share similar topology and signalling mechanisms. MCPs either bind ligands directly or interact with ligand-binding proteins, transducing the signal to downstream signalling proteins in the cytoplasm. MCPs undergo two covalent modifications: deamidation and reversible methylation at a number of glutamate residues. Attractants increase the level of methylation, while repellents decrease it. The methyl groups are added by the methyl-transferase cheR and are removed by the methylesterase cheB. Most MCPs are homodimers that contain the following organisation: an N-terminal signal sequence that acts as a transmembrane domain in the mature protein; a poorly-conserved periplasmic receptor (ligand-binding) domain; a second transmembrane domain; and a highly-conserved C-terminal cytoplasmic domain that interacts with downstream signalling components. The C-terminal domain contains the glycosylated glutamate residues.
This entry represents the signalling domain found in several methyl-accepting chemotaxis proteins. This domain is thought to transduce the signal to CheA since it is highly conserved in very diverse MCPs.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Cellular component | membrane (GO:0016020) |
Biological process | signal transduction (GO:0007165) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Alignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (9) |
Full (55646) |
Representative proteomes | UniProt (297891) |
||||
---|---|---|---|---|---|---|---|
RP15 (7045) |
RP35 (27323) |
RP55 (57728) |
RP75 (108096) |
||||
Jalview | |||||||
HTML | |||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (9) |
Full (55646) |
Representative proteomes | UniProt (297891) |
||||
---|---|---|---|---|---|---|---|
RP15 (7045) |
RP35 (27323) |
RP55 (57728) |
RP75 (108096) |
||||
Raw Stockholm | |||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Blast MCP1_ECOLI/361-421 |
Previous IDs: | none |
Type: | Family |
Sequence Ontology: | SO:0100021 |
Author: |
Sonnhammer ELL |
Number in seed: | 9 |
Number in full: | 55646 |
Average length of the domain: | 168.7 aa |
Average identity of full alignment: | 31 % |
Average coverage of the sequence by the domain: | 29.68 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 172 | ||||||||||||
Family (HMM) version: | 24 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the MCPsignal domain has been found. There are 38 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...
AlphaFold Structure Predictions
The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.