Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
302  structures 713  species 6  interactions 28435  sequences 90  architectures

Family: Rhv (PF00073)

Summary: picornavirus capsid protein

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

picornavirus capsid protein Provide feedback

CAUTION: This alignment is very weak. It can not be generated by clustalw. If a representative set is used for a seed, many so-called members are not recognised. The family should probably be split up into sub-families. Capsid proteins of picornaviruses. Picornaviruses are non-enveloped plus-strand ssRNA animal viruses with icosahedral capsids. They include rhinovirus (common cold) and poliovirus. Common structure is an 8-stranded beta sandwich. Variations (one or two extra strands) occur.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001676

This domain occurs in the capsid proteins of picornaviruses, which are non-enveloped plus-strand ssRNA animal viruses with icosahedral capsids. They include rhinovirus (common cold) and poliovirus.

The atomic structure of echovirus 1 (a member of the enterovirus genus of the picornavirus family) has been determined using cryo-crystallography and refined to 3.55 A resolution [PUBMED:10089503]. The common structure is an 8-stranded beta sandwich which can have one or two extra strands.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Viral_ssRNA_CP (CL0055), which has the following description:

The clan contains a set of viral coat protein families and peptidase A6. The only known peptidase activity is an autolytic cleavage releasing a 44-residue C-terminal fragment. The reaction is very slow and only occurs within the assembled virion. There is debate whether this is actually a true peptidase. The virion with these coat or capsid proteins are icosahedral viruses containing sixty triangular coat protein units, each unit consisting of three proteins. The coat protein consists of two subdomains, an eight-stranded beta-barrel on the surface and a three-helix bundle on the inner face.

The clan contains the following 17 members:

Birna_VP2 Bromo_coat Calici_coat Capsid-VNN Circo_capsid Como_LCP CRPV_capsid Cucumo_coat Luteo_coat Nepo_coat Peptidase_A21 Peptidase_A6 Rhv SP2 TT_ORF1 Tymo_coat Viral_coat

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(50)
Full
(28435)
Representative proteomes NCBI
(21797)
Meta
(0)
RP15
(0)
RP35
(0)
RP55
(0)
RP75
(0)
Jalview View  View          View   
HTML View               
PP/heatmap 1              
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(50)
Full
(28435)
Representative proteomes NCBI
(21797)
Meta
(0)
RP15
(0)
RP35
(0)
RP55
(0)
RP75
(0)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(50)
Full
(28435)
Representative proteomes NCBI
(21797)
Meta
(0)
RP15
(0)
RP35
(0)
RP55
(0)
RP75
(0)
Raw Stockholm Download   Download           Download    
Gzipped Download   Download           Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Overington and HMM_iterative_training
Previous IDs: rhv;
Type: Domain
Author: Eddy SR
Number in seed: 50
Number in full: 28435
Average length of the domain: 144.60 aa
Average identity of full alignment: 21 %
Average coverage of the sequence by the domain: 43.85 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.7 20.7
Trusted cut-off 20.7 20.7
Noise cut-off 20.6 20.6
Model length: 171
Family (HMM) version: 15
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 6 interactions for this family. More...

Ldl_recept_a Sushi Pico_P1A CRPV_capsid Rhv VP4_2

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Rhv domain has been found. There are 302 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...