Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
255  structures 1126  species 15  interactions 75441  sequences 1738  architectures

Family: C2 (PF00168)

Summary: C2 domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "C2 domain". More...

C2 domain Edit Wikipedia article

C2 domain
C2dom.png
The C2-domain of C.absonum α-toxin (PDB 1OLP). β-strands are shown in yellow, α-helices in red, loops in green. Co-ordinated Calcium ions are in cyan.
Identifiers
SymbolC2
PfamPF00168
InterProIPR000008
SMARTC2
PROSITEPDOC00380
SCOPe1qas / SUPFAM
OPM superfamily45
OPM protein1ugk
CDDcd00030
Phosphoinositide 3-kinase C2
PDB 1e8x EBI.jpg
Structure of phosphoinositide 3-kinase.[1]
Identifiers
SymbolPI3K_C2
PfamPF00792
InterProIPR002420
SMARTPI3K_C2
PROSITEPDOC50004
SCOPe1e8x / SUPFAM
CDDcd08380

A C2 domain is a protein structural domain involved in targeting proteins to cell membranes. The typical version (PKC-C2) has a beta-sandwich composed of 8 β-strands that co-ordinates two or three calcium ions, which bind in a cavity formed by the first and final loops of the domain, on the membrane binding face. Many other C2 domain families don't have calcium binding activity.[2][3]

Coupling with other domains

C2 domains are frequently found coupled to enzymatic domains; for example, the C2 domain in PTEN, brings the phosphatase domain into contact with the plasma membrane, where it can dephosphorylate its substrate, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), without removing it from the membrane - which would be energetically very costly. PTEN consists of two domains, a protein tyrosine phosphatase domain and a C2 domain. This domain pair constitutes a superdomain, a heritable unit that is found in various proteins in fungi, plants and animals.[4] In addition, phosphatidylinositol 3-kinase (PI3-kinase), an enzyme that phosphorylates phosphoinositides on the 3-hydroxyl group of the inositol ring, also uses a C2 domain to bind to the membrane (e.g. 1e8w PDB entry).

Evolution

The C2 domain is currently only known from eukaryotes and the procaryote Clostridium perfringens where it is part of the alpha-toxin.[5] Over 17 distinct clades of C2 domains have been identified.[2][3] Most C2 families can be traced back to basal eukaryotic species indicating an early diversification before the last eukaryotic common ancestor (LECA). Only the PKC-C2 domain family contains conserved calcium-binding residues, suggesting the typical calcium-dependent membrane interaction is a derived feature limited in PKC-C2 domains.[2]

Calcium and Lipid selectivity

C2 domains are unique among membrane targeting domains in that they show wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. This C2 domain is about 116 amino-acid residues and is located between the two copies of the C1 domain in Protein Kinase C (that bind phorbol esters and diacylglycerol) (see PDOC00379) and the protein kinase catalytic domain (see PDOC00100). Regions with significant homology[6] to the C2-domain have been found in many proteins. The C2 domain is thought to be involved in calcium-dependent phospholipid binding[7] and in membrane targeting processes such as subcellular localisation. Although most C2 domains interact with the membrane (phospholipids) in a Ca2+-dependent manner, some C2 domains can interact with the membrane without binding to Ca2+. Similarly, C2 domains have been evolved to have different specificities for lipids. Many C2 domains such as synaptotagmin C2A, bind to anionic phospholipids (PS or PIP2 containing phospholipids). However, other C2 domains such as cPLA2-α C2 domain bind to zwitterionic lipids (e.g. PC). This diversity and selectivity in Ca2+ and lipid binding suggest that C2 domains are evolved to have different functions.[8]

3D structure

,[9] the domain forms an eight-stranded beta sandwich constructed around a conserved 4-stranded motif, designated a C2 key.[9] Calcium binds in a cup-shaped depression formed by the N- and C-terminal loops of the C2-key motif. Structural analyses of several C2 domains have shown them to consist of similar ternary structures in which three Ca2+-binding loops are located at the end of an 8 stranded antiparallel beta sandwich.

Human proteins containing C2 domain

ABR; BAIAP3; BCR; C2CD2; C2CD3; CADPS; CADPS2; CAPN5; CAPN6; CC2D1A; CC2D1B; CPNE1; CPNE2; CPNE3; CPNE4; CPNE5; CPNE6; CPNE7; CPNE8; CPNE9; DAB2IP; DOC2A; DOC2B; DYSF; ESYT1; ESYT3; FAM62A; FAM62B; FAM62C; FER1L3; FER1L5; HECW1; HECW2; ITCH; ITSN1; ITSN2; MCTP1; MCTP2; MTAC2D1; NEDD4; NEDD4L; NEDL1; OTOF; PCLO; PIK3C2A; PIK3C2B; PIK3C2G; PLA2G4A; PLA2G4B; PLA2G4D; PLA2G4E; PLA2G4F; PLCB1; PLCB2; PLCB3; PLCB4; PLCD1; PLCD3; PLCD4; PLCE1; PLCG1; PLCG2; PLCH1; PLCH2; PLCL1; PLCL2; PLCZ1; PRF1; PRKCA; PRKCB1; PRKCE; PRKCG; PRKCH; RAB11FIP1; RAB11FIP2; RAB11FIP5; RASA1; RASA2; RASA3; RASA4; RASAL1; RASAL2; RGS3; RIMS1; RIMS2; RIMS3; RIMS4; RPGRIP1; RPGRIP1L; RPH3A; SGA72M; SMURF1; SMURF2; SYNGAP1; SYT1; SYT10; SYT11; SYT12; SYT13; SYT14; SYT14L; SYT15; SYT16; SYT17; SYT2; SYT3; SYT4; SYT5; SYT6; SYT7; SYT8; SYT9; SYTL1; SYTL2; SYTL3; SYTL4; SYTL5; TOLLIP; UNC13A; UNC13B; UNC13C; UNC13D; WWC2; WWP1; WWP2; PTEN

References

  1. ^ Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (October 2000). "Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine". Molecular Cell. 6 (4): 909–19. doi:10.1016/S1097-2765(05)00089-4. PMID 11090628.
  2. ^ a b c Zhang D, Aravind L (December 2010). "Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes". Gene. 469 (1–2): 18–30. doi:10.1016/j.gene.2010.08.006. PMC 2965036. PMID 20713135.
  3. ^ a b Zhang D, Aravind L (October 2012). "Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment". Cell Cycle. 11 (20): 3861–75. doi:10.4161/cc.22068. PMC 3495828. PMID 22983010.
  4. ^ Haynie DT, Xue B (May 2015). "Superdomains in the protein structure hierarchy: The case of PTP-C2". Protein Science. 24 (5): 874–82. doi:10.1002/pro.2664. PMC 4420535. PMID 25694109.
  5. ^ Naylor, Claire E.; Eaton, Julian T.; Howells, Angela; Justin, Neil; Moss, David S.; Titball, Richard W.; Basak, Ajit K. (August 1998). "Structure of the key toxin in gas gangrene". Nature Structural & Molecular Biology. 5 (8): 738–746. doi:10.1038/1447. ISSN 1545-9993. PMID 9699639.
  6. ^ Brose N, Hofmann K, Hata Y, Südhof TC (October 1995). "Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins". The Journal of Biological Chemistry. 270 (42): 25273–80. doi:10.1074/jbc.270.42.25273. PMID 7559667.
  7. ^ Davletov BA, Südhof TC (December 1993). "A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding". The Journal of Biological Chemistry. 268 (35): 26386–90. PMID 8253763.
  8. ^ Nalefski EA, Wisner MA, Chen JZ, Sprang SR, Fukuda M, Mikoshiba K, Falke JJ (March 2001). "C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity". Biochemistry. 40 (10): 3089–100. doi:10.1021/bi001968a. PMC 3862187. PMID 11258923.
  9. ^ a b Sutton RB, Davletov BA, Berghuis AM, Südhof TC, Sprang SR (March 1995). "Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold". Cell. 80 (6): 929–38. doi:10.1016/0092-8674(95)90296-1. PMID 7697723.

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

C2 domain Provide feedback

No Pfam abstract.

Literature references

  1. Ponting CP, Parker PJ; , Protein Sci 1996;5:162-166.: Extending the C2 domain family: C2s in PKCs delta, epsilon, eta, theta, phospholipases, GAPs, and perforin. PUBMED:8771209 EPMC:8771209


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000008

The C2 domain is a Ca2+-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. This C2 domain is about 116 amino-acid residues and is located between the two copies of the C1 domain in Protein Kinase C and the protein kinase catalytic domain [PUBMED:22453964]. Regions with significant homology [PUBMED:7559667] to the C2-domain have been found in many proteins. The C2 domain is thought to be involved in calcium-dependent phospholipid binding [PUBMED:8253763] and in membrane targetting processes such as subcellular localisation.

The 3D structure of the C2 domain of synaptotagmin has been reported [PUBMED:7697723], the domain forms an eight-stranded beta sandwich constructed around a conserved 4-stranded motif, designated a C2 key [PUBMED:7697723]. Calcium binds in a cup-shaped depression formed by the N- and C-terminal loops of the C2-key motif. Structural analyses of several C2 domains have shown them to consist of similar ternary structures in which three Ca2+-binding loops are located at the end of an 8 stranded antiparallel beta sandwich.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan C2 (CL0154), which has the following description:

This superfamily includes C2 domains and C2-like domains.

The clan contains the following 16 members:

Aida_C2 Anillin B9-C2 C2 C2-C2_1 CC2D2AN-C2 CEP76-C2 DOCK-C2 IcmF_C MNNL NT-C2 PI3K_C2 PTEN_C2 RPGR1_C Spond_N YEATS

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(261)
Full
(75441)
Representative proteomes UniProt
(109047)
NCBI
(220972)
Meta
(324)
RP15
(17066)
RP35
(36497)
RP55
(55698)
RP75
(66071)
Jalview View  View  View  View  View  View  View  View  View 
HTML View                 
PP/heatmap 1                

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(261)
Full
(75441)
Representative proteomes UniProt
(109047)
NCBI
(220972)
Meta
(324)
RP15
(17066)
RP35
(36497)
RP55
(55698)
RP75
(66071)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(261)
Full
(75441)
Representative proteomes UniProt
(109047)
NCBI
(220972)
Meta
(324)
RP15
(17066)
RP35
(36497)
RP55
(55698)
RP75
(66071)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Swissprot_feature_table
Previous IDs: none
Type: Domain
Sequence Ontology: SO:0000417
Author: Sonnhammer ELL , Eberhardt R
Number in seed: 261
Number in full: 75441
Average length of the domain: 106.00 aa
Average identity of full alignment: 19 %
Average coverage of the sequence by the domain: 20.03 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 22.0 9.6
Trusted cut-off 22.0 9.6
Noise cut-off 21.9 9.5
Model length: 103
Family (HMM) version: 30
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 15 interactions for this family. More...

SH2 EF-hand_10 PI-PLC-Y PI-PLC-Y FGF S_100 FGF EF-hand_like PLA2_B EF-hand_like FYVE_2 S_100 PI-PLC-X C2 PI-PLC-X

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the C2 domain has been found. There are 255 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...