Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
795  structures 684  species 3  interactions 3776  sequences 46  architectures

Family: Carb_anhydrase (PF00194)

Summary: Eukaryotic-type carbonic anhydrase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Carbonic anhydrase". More...

Carbonic anhydrase Edit Wikipedia article

Carbonate dehydratase
Carbonic anhydrase.png
Ribbon diagram of human carbonic anhydrase II, with zinc ion visible in the center
Identifiers
EC number 4.2.1.1
CAS number 9001-03-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Eukaryotic-type carbonic anhydrase
Identifiers
Symbol Carb_anhydrase
Pfam PF00194
InterPro IPR001148
PROSITE PDOC00146
SCOP 1can
SUPERFAMILY 1can

The carbonic anhydrases (or carbonate dehydratases) form a family of enzymes that catalyze the rapid interconversion of carbon dioxide and water to bicarbonate and protons (or vice versa), a reversible reaction that occurs relatively slowly in the absence of a catalyst.[1] The active site of most carbonic anhydrases contains a zinc ion; they are therefore classified as metalloenzymes.

One of the functions of the enzyme in animals is to interconvert carbon dioxide and bicarbonate to maintain acid-base balance in blood and other tissues, and to help transport carbon dioxide out of tissues.[not verified in body]

Reaction

The reaction catalyzed by carbonic anhydrase is:

(in tissues - high CO2 concentration)[2]

The reaction rate of carbonic anhydrase is one of the fastest of all enzymes, and its rate is typically limited by the diffusion rate of its substrates. Typical catalytic rates of the different forms of this enzyme ranging between 104 and 106 reactions per second.[3]

The reverse reaction is relatively slow (kinetics in the 15-second range) in the absence of a catalyst. This is why a carbonated drink does not instantly degas when opening the container; however it will rapidly degas in the mouth when it comes in contact with carbonic anhydrase that is contained in saliva.[4]

An anhydrase is defined as an enzyme that catalyzes the removal of a water molecule from a compound, and so it is this "reverse" reaction that gives carbonic anhydrase its name, because it removes a water molecule from carbonic acid.

(in lungs and nephrons of the kidney - low CO2 concentration, in plant cells)

Mechanism

Close-up rendering of active site of human carbonic anhydrase II, showing three histidine residues and a hydroxide group coordinating (dashed lines) the zinc ion at center. From PDB: 1CA2​.

A zinc prosthetic group in the enzyme is coordinated in three positions by histidine side-chains. The fourth coordination position is occupied by water. This causes polarisation of the hydrogen-oxygen bond, making the oxygen slightly more positive, thereby weakening the bond.

A fourth histidine is placed close to the substrate of water and accepts a proton, in an example of general acid - general base catalysis (see the article "Acid catalysis"). This leaves a hydroxide attached to the zinc.

The active site also contains specificity pocket for carbon dioxide, bringing it close to the hydroxide group. This allows the electron-rich hydroxide to attack the carbon dioxide, forming bicarbonate.

Families

Ribbon diagram of human carbonic anhydrase II. Active site zinc ion visible at center. From PDB: 1CA2​.

There are at least five distinct CA families (α, β, γ, δ and ε). These families have no significant amino acid sequence similarity and in most cases are thought to be an example of convergent evolution. The α-CAs are found in humans.

α-CA

The CA enzymes found in mammals are divided into four broad subgroups,[5] which, in turn consist of several isoforms:

There are three additional "acatalytic" CA isoforms (CA-VIII, CA-X, and CA-XI) (CA8, CA10, CA11) whose functions remain unclear.[6]

Comparison of mammalian carbonic anhydrases
Isoform Gene Molecular mass[7] Location (cell) Location (tissue)[7] Specific activity of human enzymes (except for mouse CA XV) (s−1)[8] Sensitivity to sulfonamides (acetazolamide in this table) KI (nM)[8]
CA-I CA1 29 kDa cytosol red blood cell and GI tract 2.0 × 105 250
CA-II CA2 29 kDa cytosol almost ubiquitous 1.4 × 106 12
CA-III CA3 29 kDa cytosol 8% of soluble protein in Type I muscle 1.3 × 104 240000
CA-IV CA4 35 kDa extracellular GPI-linked GI tract, kidney, endothelium 1.1 × 106 74
CA-VA CA5A 34.7 kDa (predicted) mitochondria liver 2.9 × 105 63
CA-VB CA5B 36.4 kDa (predicted) mitochondria widely distributed 9.5 × 105 54
CA-VI CA6 39-42 kDa secretory saliva and milk 3.4 × 105 11
CA-VII CA7 29 kDa cytosol widely distributed 9.5 × 105 2.5
CA-IX CA9 54, 58 kDa cell membrane-associated normal GI tract, several cancers 1.1 × 106 16
CA-XII CA12 44 kDa extracellularily located active site kidney, certain cancers 4.2 × 105 5.7
CA-XIII[9] CA13 29 kDa cytosol widely distributed 1.5 × 105 16
CA-XIV CA14 54 kDa extracellularily located active site kidney, heart, skeletal muscle, brain 3.1 × 105 41
CA-XV[10] CA15 34-36 kDa extracellular GPI-linked kidney, not expressed in human tissues 4.7 × 105 72

β-CA

Most prokaryotic and plant chloroplast CAs belong to the beta family. Two signature patterns for this family have been identified:

  • C-[SA]-D-S-R-[LIVM]-x-[AP]
  • [EQ]-[YF]-A-[LIVM]-x(2)-[LIVM]-x(4)-[LIVMF](3)-x-G-H-x(2)-C-G

γ-CA

The gamma class of CAs come from methanogens, methane-producing bacteria that grow in hot springs.

δ-CA

The delta class of CAs has been described in diatoms. The distinction of this class of CA has recently[11] come into question, however.

ζ-CA

The zeta class of CAs occurs exclusively in bacteria in a few chemolithotrophs and marine cyanobacteria that contain cso-carboxysomes.[12] Recent 3-dimensional analyses[11] suggest that ζ-CA bears some structural resemblance to β-CA, particularly near the metal ion site. Thus, the two forms may be distantly related, even though the underlying amino acid sequence has since diverged considerably.

η-CA

The eta family of CAs was recently found in organisms of the genus Plasmodium. These are a group of enzymes previously thought to belong to the alpha family of CAs, however it has been demonstrated that η-CAs have unique features, such as their metal ion coordination pattern.[13]

Structure and function

Several forms of carbonic anhydrase occur in nature. In the best-studied α-carbonic anhydrase form present in animals, the zinc ion is coordinated by the imidazole rings of 3 histidine residues, His94, His96, and His119.[citation needed]

The primary function of the enzyme in animals is to interconvert carbon dioxide and bicarbonate to maintain acid-base balance in blood and other tissues, and to help transport carbon dioxide out of tissues.

There are at least 14 different isoforms in mammals. Plants contain a different form called β-carbonic anhydrase, which, from an evolutionary standpoint, is a distinct enzyme, but participates in the same reaction and also uses a zinc ion in its active site. In plants, carbonic anhydrase helps raise the concentration of CO2 within the chloroplast in order to increase the carboxylation rate of the enzyme RuBisCO. This is the reaction that integrates CO2 into organic carbon sugars during photosynthesis, and can use only the CO2 form of carbon, not carbonic acid or bicarbonate.[citation needed]

Cadmium-containing Carbonic Anhydrase

Marine diatoms have been found to express a new form of ζ carbonic anhydrase. T. weissflogii, a species of phytoplankton common to many marine ecosystems, was found to contain carbonic anhyrdase with a cadmium ion in place of zinc.[14] Previously, it had been believed that cadmium was a toxic metal with no biological function whatsoever. However, this species of phytoplankton appears to have adapted to the low levels of zinc in the ocean by using cadmium when there is not enough zinc.[15] Although the concentration of cadmium in sea water is also low (about 1x10−16 molar), there is an environmental advantage to being able to use either metal depending on which is more available at the time. This type of carbonic anhydrase is therefore cambialistic, meaning it can interchange the metal in its active site with other metals (namely, zinc and cadmium).[16]

Similarities To Other Carbonic Anhydrases

The mechanism of cadmium carbonic anhydrase (CDCA) is essentially the same as that of other carbonic anhydrases in its conversion of carbon dioxide and water into bicarbonate and a proton.[17] Additionally, like the other carbonic anhydrases, CDCA makes the reaction go almost as fast as the diffusion rate of its substrates, and it can be inhibited by sulfonamide and sulfamate derivatives.[17]

Differences From Other Carbonic Anhydrases

Unlike most other carbonic anhydrases, the active site metal ion is not bound by three histidine residues and a hydroxide ion. Instead, it is bound by two cysteine residues, one histidine residue, and a hydroxide ion, which is characteristic of β-CA.[17][18] Due to the fact that cadmium is a soft acid, it will be more tightly bound by soft base ligands.[16] The sulfur atoms on the cysteine residues are soft bases, thus binding the cadmium more tightly than the nitrogen on histidine residues would. CDCA also has a three-dimensional folding structure that is unlike any other carbonic anhydrase, and its amino acid sequence is dissimilar to the other carbonic anhydrases.[17] It is a monomer with three domains, each one identical in amino acid sequence and each one containing an active site with a metal ion.[18]

Another key difference between CDCA and the other carbonic anhydrases is that CDCA has a mechanism for switching out its cadmium ion for a zinc ion in the event that zinc becomes more available to the phytoplankton than cadmium. The active site of CDCA is essentially "gated" by a chain of nine amino acids with glycine residues at positions 1 and 9. Normally, this gate remains closed and the cadmium ion is trapped inside. However, due to the flexibility and position of the glycine residues, this gate can be opened in order to remove the cadmium ion. A zinc ion can then be put in its place and the gate will close behind it.[17] As a borderline acid, zinc will not bind as tightly to the cysteine ligands as cadmium would, but the enzyme will still be active and reasonably efficient. The metal in the active site can be switched between zinc and cadmium depending on which one is more abundant at the time. It is the ability of CDCA to utilize either cadmium or zinc that likely gives T. weissflogii a survival advantage.[15]

Transport of Cadmium

Cadmium is still considered lethal to phytoplankton in high amounts. Studies have shown that T. weissflogii has an initial toxic response to cadmium when exposed to it. The toxicity of the metal is reduced by the transcription and translation of phytochelatin, which are proteins that can bind and transport cadmium. Once bound by phytochelatin, cadmium is no longer toxic, and it can be safely transported to the CDCA enzyme.[14] It's also been shown that the uptake of cadmium via phytochelatin leads to a significant increase in CDCA expression.[14]

CDCA-like Proteins

Other phytoplankton from different water sources have been tested for the presence of CDCA. It was found that many of them contain proteins that are homologous to the CDCA found in T. weissflogii.[14] This includes species from Great Bay, New Jersey as well as in the Pacific Ocean near the equator. In all species tested, CDCA-like proteins showed high levels of expression even in high concentrations of zinc and in the absence of cadmium.[14] The similarity between these proteins and the CDCA expressed by T. weissflogii varied, but they were always at least 67% similar.[14]

Industrial applications

Modified carbonic anhydrase enzymes have been used to replace methyl diethanolamine ("MDEA") in carbon dioxide capture.

See also

References

  1. ^ Badger MR, Price GD (1994). "The role of carbonic anhydrase in photosynthesis". Annu. Rev. Plant Physiol. Plant Mol. Bio. 45: 369–392. doi:10.1146/annurev.pp.45.060194.002101. 
  2. ^ Carbonic acid has a pKa of around 6.36 (the exact value depends on the medium) so at pH 7 a small percentage of the bicarbonate is protonated. See carbonic acid for details concerning the equilibria HCO3- + H+ H2CO3 and H2CO3 CO2 + H2O
  3. ^ Lindskog S (1997). "Structure and mechanism of carbonic anhydrase". Pharmacol. Ther. 74 (1): 1–20. doi:10.1016/S0163-7258(96)00198-2. PMID 9336012. 
  4. ^ Thatcher BJ, Doherty AE, Orvisky E, Martin BM, Henkin RI (September 1998). "Gustin from human parotid saliva is carbonic anhydrase VI". Biochem. Biophys. Res. Commun. 250 (3): 635–41. doi:10.1006/bbrc.1998.9356. PMID 9784398. 
  5. ^ Breton S (2001). "The cellular physiology of carbonic anhydrases". JOP 2 (4 Suppl): 159–64. PMID 11875253. 
  6. ^ Lovejoy DA, Hewett-Emmett D, Porter CA, Cepoi D, Sheffield A, Vale WW, Tashian RE (1998). "Evolutionarily conserved, "acatalytic" carbonic anhydrase-related protein XI contains a sequence motif present in the neuropeptide sauvagine: the human CA-RP XI gene (CA11) is embedded between the secretor gene cluster and the DBP gene at 19q13.3". Genomics 54 (3): 484–93. doi:10.1006/geno.1998.5585. PMID 9878252. 
  7. ^ a b Unless else specified: Boron WF (2005). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. ISBN 1-4160-2328-3.  Page 638
  8. ^ a b Hilvo M, Baranauskiene L, Salzano AM, Scaloni A, Matulis D, Innocenti A, Scozzafava A, Monti SM, Di Fiore A, De Simone G, Lindfors M, Jänis J, Valjakka J, Pastoreková S, Pastorek J, Kulomaa MS, Nordlund HR, Supuran CT, Parkkila S (2008). "Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes". J. Biol. Chem. 283 (41): 27799–809. doi:10.1074/jbc.M800938200. PMID 18703501. 
  9. ^ Lehtonen J, Shen B, Vihinen M, Casini A, Scozzafava A, Supuran CT, Parkkila AK, Saarnio J, Kivelä AJ, Waheed A, Sly WS, Parkkila S (2004). "Characterization of CA XIII, a novel member of the carbonic anhydrase isozyme family". J. Biol. Chem. 279 (4): 2719–27. doi:10.1074/jbc.M308984200. PMID 14600151. 
  10. ^ Hilvo M, Tolvanen M, Clark A, Shen B, Shah GN, Waheed A, Halmi P, Hänninen M, Hämäläinen JM, Vihinen M, Sly WS, Parkkila S (2005). "Characterization of CA XV, a new GPI-anchored form of carbonic anhydrase". Biochem. J. 392 (Pt 1): 83–92. doi:10.1042/BJ20051102. PMC 1317667. PMID 16083424. 
  11. ^ a b Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kerfeld CA (2006). "The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two". J. Biol. Chem. 281 (11): 7546–55. doi:10.1074/jbc.M510464200. PMID 16407248. 
  12. ^ So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004). "A novel evolutionary lineage of carbonic anhydrase (zeta class) is a component of the carboxysome shell". J. Bacteriol. 186 (3): 623–30. doi:10.1128/JB.186.3.623-630.2004. PMC 321498. PMID 14729686. 
  13. ^ Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen SA, Capasso C, Supuran CT (Sep 2014). "Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the η-carbonic anhydrases". Bioorganic & Medicinal Chemistry Letters 24 (18): 4389–96. doi:10.1016/j.bmcl.2014.08.015. PMID 25168745. 
  14. ^ a b c d e f Park H, McGinn PJ, More l F (19 May 2008). "Expression of cadmium carbonic anhydrase of diatoms in seawater". Aquatic Microbial Ecology 51: 183–193. doi:10.3354/ame01192. 
  15. ^ a b Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FM (May 2005). "Biochemistry: a cadmium enzyme from a marine diatom". Nature 435 (7038): 42. doi:10.1038/435042a. PMID 15875011. 
  16. ^ a b Bertini I, Gray H, Stiefel E, Valentine J (2007). Biological Inorganic Chemistry: Structure and Reactivity (First ed.). Sausalito, California: University Science Books. ISBN 978-1-891389-43-6. 
  17. ^ a b c d e Sigel A, Sigel H, Sigel RK (2013). Cadmium from toxicity to essentiality. Dordrecht: Springer. ISBN 978-94-007-5179-8. 
  18. ^ a b Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM (Mar 2008). "Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms". Nature 452 (7183): 56–61. doi:10.1038/nature06636. PMID 18322527. 

Further reading

  • Lyall V, Alam RI, Phan DQ, Ereso GL, Phan TH, Malik SA, Montrose MH, Chu S, Heck GL, Feldman GM, DeSimone JA (September 2001). "Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction". Am. J. Physiol., Cell Physiol. 281 (3): C1005–13. PMID 11502578. 
  • Goodsell D (2004-01-01). "Carbonic Anhydrase". PDB Molecule of the Month. Protein Data Bank. Retrieved 2011-05-28. 

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Eukaryotic-type carbonic anhydrase Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001148

Carbonic anhydrases (CA: EC) are zinc metalloenzymes which catalyse the reversible hydration of carbon dioxide to bicarbonate [PUBMED:18336305, PUBMED:10978542]. The alpha-CAs are found predominantly in animals but also in bacteria and green algae. There are at least 15 isoforms found in mammals, which can be subdivided into cytosolic CAs (CA-I, CA-II, CA-III, CA-VII and CA XIII), mitochondrial CAs (CA-VA and CA-VB), secreted CAs (CA-VI), membrane-associated (CA-IV, CA-IX, CA-XII and CA-XIV) and those without CA activity, the CA-related proteins (CA-RP VIII, X and XI).

This entry represents a domain characteristic of alpha class carbonic anhydrases. The dominating secondary structure is a 10-stranded, twisted beta-sheet, which divides the molecules into two halves [PUBMED:9336012]. Alpha-CAs contain a single zinc atom bound to three conserved histidine residues. The catalytically active group is the zinc-bound water which ionizes to a hydroxide group. In the mechanism of catalysis, nucleophilic attack of CO2 by a zinc-bound hydroxide ion is followed by displacement of the resulting zinc-bound bicarbonate ion by water; subsequent deprotonation regenerates the nucleophilic zinc-bound hydroxide ion [PUBMED:8673298, PUBMED:11493685].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(389)
Full
(3776)
Representative proteomes UniProt
(8337)
NCBI
(12803)
Meta
(87)
RP15
(932)
RP35
(1923)
RP55
(3092)
RP75
(4080)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(389)
Full
(3776)
Representative proteomes UniProt
(8337)
NCBI
(12803)
Meta
(87)
RP15
(932)
RP35
(1923)
RP55
(3092)
RP75
(4080)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(389)
Full
(3776)
Representative proteomes UniProt
(8337)
NCBI
(12803)
Meta
(87)
RP15
(932)
RP35
(1923)
RP55
(3092)
RP75
(4080)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: carb_anhydrase;
Type: Domain
Author: Finn RD
Number in seed: 389
Number in full: 3776
Average length of the domain: 213.70 aa
Average identity of full alignment: 25 %
Average coverage of the sequence by the domain: 64.60 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 17690987 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.1 20.1
Trusted cut-off 20.6 20.2
Noise cut-off 20.0 19.8
Model length: 254
Family (HMM) version: 19
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 3 interactions for this family. More...

Ig_2 I-set Carb_anhydrase

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Carb_anhydrase domain has been found. There are 795 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...