Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
43  structures 294  species 3  interactions 2414  sequences 51  architectures

Family: Disintegrin (PF00200)

Summary: Disintegrin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Disintegrin". More...

Disintegrin Edit Wikipedia article

Disintegrin
Desintegrin heterodimer.png
Structure of disintegrin heterodimer from Echis carinatus
Identifiers
Symbol Disintegrin
Pfam PF00200
InterPro IPR001762
PROSITE PDOC00351
SCOP 1kst
SUPERFAMILY 1kst
OPM superfamily 256
OPM protein 2ao7

Disintegrins are a family of small proteins (45–84 amino acids in length) from viper venoms that function as potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion.[1][2]

Operation[edit]

Disintegrins work by countering the blood clotting steps, inhibiting the clumping of platelets. They interact with the beta-1 and -3 families of integrins receptors. Integrins are cell receptors involved in cell–cell and cell–extracellular matrix interactions, serving as the final common pathway leading to aggregation via formation of platelet–platelet bridges, which are essential in thrombosis and haemostasis. Disintegrins contain an RGD (Arg-Gly-Asp) or KGD (Lys-Gly-Asp) sequence motif that binds specifically to integrin IIb-IIIa receptors on the platelet surface, thereby blocking the binding of fibrinogen to the receptor–glycoprotein complex of activated platelets. Disintegrins act as receptor antagonists, inhibiting aggregation induced by ADP, thrombin, platelet-activating factor and collagen.[3] The role of disintegrin in preventing blood coagulation renders it of medical interest, particularly with regard to its use as an anti-coagulant.[4]

Types of disintegrin[edit]

Disintegrins from different snake species have been characterised: albolabrin, applagin, barbourin, batroxostatin, bitistatin, obtustatin,[5] schistatin,[6] echistatin,[7] elegantin, eristicophin, flavoridin,[8] halysin, kistrin, mojastin (Crotalus scutulatus), rubistatin (Crotalus ruber), tergeminin, salmosin[9] and triflavin.

Disintegrins are split into 5 classes: small, medium, large, dimeric, and snake venom metalloproteinases.[10]

Small Disintegrins: 49-51 amino acids, 4 disulfide bonds
Medium Disintegrins: 70 amino acids, 6 disulfide bonds
Large Disintegrins: 84 amino acids, 7 disulfide bonds
Dimeric Disintegrins: 67 amino acids, 4 intra-chain disulfide bonds
Snake Venom Metalloproteinases: 100 amino acids, 8 disulfide bond

Evolution of disintegrin family[edit]

Disintegrins evolved via gene duplication of an ancestral protein family, the ADAM family. Small, medium, large, and dimeric disintegrin family are found only in the Viperidae family, suggesting duplication and diversification about 12-20 million years ago. Snake venom metalloproteinases are found through the entire Colubroidea superfamily, suggesting that they evolved before Colubroidea diversified roughly 60 million years ago.[11]

Other sources of disintegrin proteins[edit]

Disintegrin-like proteins are found in various species ranging from slime mold to humans. Some other proteins known to contain a disintegrin domain are:

  • Some snake venom zinc metalloproteinases[12] consist of an N-terminal catalytic domain fused to a disintegrin domain. Such is the case for trimerelysin I (HR1B), atrolysin-e (Ht-e) and trigramin. It has been suggested that these proteinases are able to cleave themselves from the disintegrin domains and that the latter may arise from such a post-translational processing.
  • The beta-subunit of guinea pig sperm surface protein PH30.[13] PH30 is a protein involved in sperm-egg fusion. The beta subunit contains a disintegrin at the N-terminal extremity.
  • Mammalian epididymial apical protein 1 (EAP I).[14] EAP I is associated with the sperm membrane and may play a role in sperm maturation. Structurally, EAP I consists of an N-terminal domain, followed by a zinc metalloproteinase domain, a disintegrin domain, and a large C-terminal domain that contains a transmembrane region.
  • ADAM and ADAMTS protein families, which include important protease enzymes. As an example, the secreted protease ADAMTS13, found in serum, cleaves Von Willebrand factor and acts as a natural, endogenous inhibitor of platelet adhesion and aggregation.

See also[edit]

References[edit]

  1. ^ McLane MA, Sanchez EE, Wong A, Paquette-Straub C, Perez JC (2004). "Disintegrins". Curr Drug Targets Cardiovasc Haematol Disord 4 (4): –. PMID 15578957. 
  2. ^ Lu X, Lu D, Scully MF, Kakkar VV (2005). "Snake venom metalloproteinase containing a disintegrin-like domain, its structure-activity relationships at interacting with integrins". Curr Med Chem Cardiovasc Hematol Agents 3 (3): –. PMID 15974889. 
  3. ^ Rahman S, Xu CS (2001). "Identification by Site-directed Mutagenesis of Amino Acid Residues Flanking RGD Motifs of Snake Venom Disintegrins for Their Structure and Function". Acta Biochim. Biophys. Sin. 33 (2): –. PMID 12050803. 
  4. ^ Lu X, Lu D, Scully MF, Kakkar VV (2006). "Integrins in drug targeting-RGD templates in toxins". Curr Pharm Des 12 (22): –. PMID 16918409. 
  5. ^ Calvete JJ, Monleon D, Celda B, Paz Moreno-Murciano M, Marcinkiewicz C (2003). "NMR solution structure of the non-RGD disintegrin obtustatin". J. Mol. Biol. 329 (1): –. doi:10.1016/S0022-2836(03)00371-1. PMID 12742023. 
  6. ^ Betzel C, Sharma S, Singh TP, Perbandt M, Yadav S, Kaur P, Bilgrami S (2005). "Crystal structure of the disintegrin heterodimer from saw-scaled viper (Echis carinatus) at 1.9 A resolution". Biochemistry 44 (33): –. doi:10.1021/bi050849y. PMID 16101289. 
  7. ^ Calvete JJ, Kovacs H, Monleon D, Celda B, Esteve V (2005). "Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR". Biochem J 387 (Pt 1): –. doi:10.1042/BJ20041343. PMC 1134932. PMID 15535803. 
  8. ^ Mizuno H, Morita T, Fujii Y, Fujimoto Z, Horii K, Okuda D (2003). "Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD". J. Mol. Biol. 332 (5): –. doi:10.1016/S0022-2836(03)00991-4. PMID 14499613. 
  9. ^ Lee W, Shin J, Kang I, Hong SY, Chung K, Jang Y, Kim DS (2003). "Solution structure of a novel disintegrin, salmosin, from Agkistrondon halys venom". Biochemistry 42 (49): –. doi:10.1021/bi0300276. PMID 14661951. 
  10. ^ Calvete, J (2005). "Structure-function correlations of snake venom disintegrins". Curr Pharm Design 11 (7): 825–835. 
  11. ^ Juarez, P; Comas, Gonzalez-Candelas, Calvete (2008). "Evolution of Snake Venom Disintegrins by Positive Darwinian Selection". Molecular Biology and Evolution 25 (11): 2391–2407. 
  12. ^ Teixeira Cde .F, Fernandes CM, Zuliani JP, Zamuner SF (2005). "Inflammatory effects of snake venom metalloproteinases". Mem. Inst. Oswaldo Cruz 100: –. PMID 15962120. 
  13. ^ Turck CW, Myles DG, Primakoff P, Blobel CP, Wolfsberg TG, White JM (1992). "A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion". Nature 356 (6366): 248–252. doi:10.1038/356248a0. PMID 1552944. 
  14. ^ Hall L, Jones R, Barker PJ, Perry AC (1992). "A mammalian epididymal protein with remarkable sequence similarity to snake venom haemorrhagic peptides". Biochem. J. 286: 671–675. PMC 1132955. PMID 1417724. 

External links[edit]

This article incorporates text from the public domain Pfam and InterPro IPR001762

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Disintegrin Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001762

Disintegrins are a family of small proteins from viper venoms that function as potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion [PUBMED:15578957, PUBMED:15974889]. Integrin receptors are involved in cell-cell and cell-extracellular matrix interactions, serving as the final common pathway leading to aggregation via formation of platelet-platelet bridges, which are essential in thrombosis and haemostasis. Disintegrins contain an RGD (Arg-Gly-Asp) or KGD (Lys-Gly-Asp) sequence motif that binds specifically to integrin IIb-IIIa receptors on the platelet surface, thereby blocking the binding of fibrinogen to the receptor-glycoprotein complex of activated platelets. Disintegrins act as receptor antagonists, inhibiting aggregation induced by ADP, thrombin, platelet-activating factor and collagen [PUBMED:12050803]. The role of disintegrin in preventing blood coagulation renders it of medical interest, particularly with regard to its use as an anti-coagulant [PUBMED:16918409].

Disintegrins from different snake species have been characterised: albolabrin, applagin, barbourin, batroxostatin, bitistatin, obtustatin [PUBMED:12742023], schistatin [PUBMED:16101289], echistatin [PUBMED:15535803], elegantin, eristicophin, flavoridin [PUBMED:14499613], halysin, kistrin, tergeminin, salmosin [PUBMED:14661951] and triflavin.

Disintegrin-like proteins are found in various species ranging from slime mold to humans. Some other proteins known to contain a disintegrin domain are:

  • Some snake venom zinc metalloproteinases [PUBMED:15962120] consist of an N-terminal catalytic domain fused to a disintegrin domain. Such is the case for trimerelysin I (HR1B), atrolysin-e (Ht-e) and trigramin. It has been suggested that these proteinases are able to cleave themselves from the disintegrin domains and that the latter may arise from such a post-translational processing.
  • The beta-subunit of guinea pig sperm surface protein PH30 [PUBMED:1552944]. PH30 is a protein involved in sperm-egg fusion. The beta subunit contains a disintegrin at the N-terminal extremity.
  • Mammalian epididymial apical protein 1 (EAP I) [PUBMED:1417724]. EAP I is associated with the sperm membrane and may play a role in sperm maturation. Structurally, EAP I consists of an N-terminal domain, followed by a zinc metalloproteinase domain, a disintegrin domain, and a large C-terminal domain that contains a transmembrane region.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(154)
Full
(2414)
Representative proteomes NCBI
(2300)
Meta
(5)
RP15
(211)
RP35
(280)
RP55
(525)
RP75
(1025)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(154)
Full
(2414)
Representative proteomes NCBI
(2300)
Meta
(5)
RP15
(211)
RP35
(280)
RP55
(525)
RP75
(1025)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(154)
Full
(2414)
Representative proteomes NCBI
(2300)
Meta
(5)
RP15
(211)
RP35
(280)
RP55
(525)
RP75
(1025)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: disintegrin;
Type: Domain
Author: Finn RD
Number in seed: 154
Number in full: 2414
Average length of the domain: 73.50 aa
Average identity of full alignment: 43 %
Average coverage of the sequence by the domain: 11.29 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 19.6 19.6
Trusted cut-off 19.8 19.8
Noise cut-off 19.5 19.5
Model length: 76
Family (HMM) version: 18
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 3 interactions for this family. More...

Reprolysin ADAM_CR Disintegrin

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Disintegrin domain has been found. There are 43 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...