Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
58  structures 1610  species 2  interactions 3739  sequences 75  architectures

Family: Tyrosinase (PF00264)

Summary: Common central domain of tyrosinase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Tyrosinase". More...

Tyrosinase Edit Wikipedia article

Tyrosinase
Identifiers
Symbols TYR ; ATN; CMM8; OCA1; OCA1A; OCAIA; SHEP3
External IDs OMIM606933 MGI98880 HomoloGene30969 ChEMBL: 1973 GeneCards: TYR Gene
EC number 1.14.18.1
RNA expression pattern
PBB GE TYR 206630 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 7299 22173
Ensembl ENSG00000077498 ENSMUSG00000004651
UniProt P14679 P11344
RefSeq (mRNA) NM_000372 NM_011661
RefSeq (protein) NP_000363 NP_035791
Location (UCSC) Chr 11:
88.91 – 89.03 Mb
Chr 7:
87.43 – 87.49 Mb
PubMed search [1] [2]

In molecular biology, tyrosinase is an oxidase that is the rate-limiting enzyme for controlling the production of melanin. It is mainly involved in two distinct reactions of melanin synthesis; firstly, the hydroxylation of a monophenol and secondly, the conversion of an o-diphenol to the corresponding o-quinone. o-Quinone undergoes several reactions to eventually form melanin.[1] Tyrosinase is a copper-containing enzyme present in plant and animal tissues that catalyzes the production of melanin and other pigments from tyrosine by oxidation, as in the blackening of a peeled or sliced potato exposed to air. It is found inside melanosomes. In humans, the tyrosinase enzyme is encoded by the TYR gene.[2]

Clinical significance

A mutation in the tyrosinase gene resulting in impaired tyrosinase production leads to type I oculocutaneous albinism, a hereditary disorder that affects one in every 17,000 people.[3]

Tyrosinase activity is very important. If uncontrolled during melanoma, it results in increased melanin synthesis.

Several polyphenols, including flavonoids or stilbenoid, substrate analogues, free radical scavengers, and copper chelators, have been known to inhibit tyrosinase.[4] Henceforth, the medical and cosmetic industries are focusing research on tyrosinase inhibitors to treat skin disorders.[1]

Catalyzed reaction

monophenol monooxygenase
Catechol-Quinone.svg
Catechol-Quinone
Identifiers
EC number 1.14.18.1
CAS number 9002-10-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
||  

Tyrosinase carries out the oxidation of phenols such as tyrosine and dopamine using dioxygen (O2). In the presence of catechol, benzoquinone is formed (see reaction below). Hydrogens removed from catechol combine with oxygen to form water.

The substrate specificity becomes dramatically restricted in mammalian tyrosinase which uses only L-form of tyrosine or DOPA as substrates, and has restricted requirement for L-DOPA as cofactor.[5]

Structure

Tyrosinase
PDB 1js8 EBI.jpg
structure of a functional unit from octopus hemocyanin
Identifiers
Symbol Tyrosinase
Pfam PF00264
Pfam clan CL0205
InterPro IPR002227
PROSITE PDOC00398
SCOP 1hc2
SUPERFAMILY 1hc2
Common central domain of tyrosinase
Identifiers
Symbol Tyrosinase
Pfam PF00264
InterPro IPR002227
PROSITE PDOC00398
SCOP 1hc2
SUPERFAMILY 1hc2

Tyrosinases have been isolated and studied from a wide variety of plant, animal, and fungal species. Tyrosinases from different species are diverse in terms of their structural properties, tissue distribution, and cellular location.[6] No common tyrosinase protein structure occurring across all species has been found.[7] The enzymes found in plant, animal, and fungal tissue frequently differ with respect to their primary structure, size, glycosylation pattern, and activation characteristics. However, all tyrosinases have in common a binuclear, type 3 copper centre within their active sites. Here, two copper atoms are each coordinated with three histidine residues.

Transmembrane protein and sorting

Human tyrosinase is a single membrane-spanning transmembrane protein.[8] In humans, tyrosinase is sorted into melanosomes[9] and the catalytically active domain of the protein resides within melanosomes. Only a small, enzymatically inessential part of the protein extends into the cytoplasm of the melanocyte.

Active site

Crystallographic structure of a Streptomyces-derived tyrosinase in complex with a so-called "caddie protein"[10] In all models, only the tyrosinase molecule is shown, copper atoms are shown in green and the molecular surface is shown in red. In models D and E, histidine amino acids are shown as a blue line representation. From model E, each copper atom within the active site is indeed complexed with three histidine residues, forming a type 3 copper center. From models C and D, the active site for this protein can be seen to sit within a pillus formed on the molecular surface of the molecule.

The two copper atoms within the active site of tyrosinase enzymes interact with dioxygen to form a highly reactive chemical intermediate that then oxidizes the substrate. The activity of tyrosinase is similar to catechol oxidase, a related class of copper oxidase. Tyrosinases and catechol oxidases are collectively termed polyphenol oxidases.

Gene regulation

The gene for tyrosinase is regulated by the microphthalmia-associated transcription factor (MITF).[11][12]

References

  1. ^ a b Kumar CM, Sathisha UV, Dharmesh S, Rao AG, Singh SA (2011). "Interaction of sesamol (3,4-methylenedioxyphenol) with tyrosinase and its effect on melanin synthesis". Biochimie 93 (3): 562–9. doi:10.1016/j.biochi.2010.11.014. PMID 21144881. 
  2. ^ Barton DE, Kwon BS, Francke U (July 1988). "Human tyrosinase gene, mapped to chromosome 11 (q14----q21), defines second region of homology with mouse chromosome 7". Genomics 3 (1): 17–24. doi:10.1016/0888-7543(88)90153-X. PMID 3146546. 
  3. ^ Witkop CJ (October 1979). "Albinism: hematologic-storage disease, susceptibility to skin cancer, and optic neuronal defects shared in all types of oculocutaneous and ocular albinism". Ala J Med Sci 16 (4): 327–30. PMID 546241. 
  4. ^ Chang, Te-Sheng (2009). "An Updated Review of Tyrosinase Inhibitors". International Journal of Molecular Sciences 10 (6): 2440–75. doi:10.3390/ijms10062440. PMC 2705500. PMID 19582213. 
  5. ^ Hearing VJ, Ekel TM, Montague PM, Nicholson JM (February 1980). "Mammalin tyrosinase. Stoichiometry and measurement of reaction products". Biochim. Biophys. Acta 611 (2): 251–68. doi:10.1016/0005-2744(80)90061-3. PMID 6766744. 
  6. ^ Mayer, AM (2006). "Polyphenol oxidases in plants and fungi: Going places? A review". Phytochemistry 67 (21): 2318–2331. doi:10.1016/j.phytochem.2006.08.006. PMID 16973188. 
  7. ^ Jaenicke, E and Decker, H. (2003). "Tyrosinases from crustaceans form hexamers". Biochem. J. 371 (Pt 2): 515–523. doi:10.1042/BJ20021058. PMC 1223273. PMID 12466021. 
  8. ^ Kwon BS, Haq AK, Pomerantz SH, Halaban R (November 1987). "Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus". Proc. Natl. Acad. Sci. U.S.A. 84 (21): 7473–7. doi:10.1073/pnas.84.21.7473. PMC 299318. PMID 2823263. 
  9. ^ Theos AC, Tenza D, Martina JA, Hurbain I, Peden AA, Sviderskaya EV, Stewart A, Robinson MS, Bennett DC, Cutler DF, Bonifacino JS, Marks MS, Raposo G (November 2005). "Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes". Mol. Biol. Cell 16 (11): 5356–72. doi:10.1091/mbc.E05-07-0626. PMC 1266432. PMID 16162817. 
  10. ^ PDB 1WX3; Matoba Y, Kumagi, T. et al. (2006). "Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis". J. Biol. Chem. 281 (13): 8981–8990. doi:10.1074/jbc.M509785200. PMID 16436386. 
  11. ^ Hou L, Panthier JJ, Arnheiter H (2000). "Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF". Development 127 (24): 5379–89. PMID 11076759. 
  12. ^ Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E (2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell Melanoma Res. 21 (6): 665–76. doi:10.1111/j.1755-148X.2008.00505.x. PMID 19067971. 

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Common central domain of tyrosinase Provide feedback

This family also contains polyphenol oxidases and some hemocyanins. Binds two copper ions via two sets of three histidines. This family is related to PF00372.

Literature references

  1. Volbeda A, Hol WG; , J Mol Biol 1989;209:249-279.: Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 A resolution. PUBMED:2585484 EPMC:2585484


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR002227

Tyrosinase (EC) [PUBMED:3130643] is a copper monooxygenases that catalyzes the hydroxylation of monophenols and the oxidation of o-diphenols to o-quinols. This enzyme, found in prokaryotes as well as in eukaryotes, is involved in the formation of pigments such as melanins and other polyphenolic compounds. Tyrosinase binds two copper ions (CuA and CuB). Each of the two copper ions has been shown [PUBMED:1901488] to be bound by three conserved histidines residues. The regions around these copper-binding ligands are well conserved and also shared by some hemocyanins, which are copper-containing oxygen carriers from the hemolymph of many molluscs and arthropods [PUBMED:2664531, PUBMED:1898774]. At least two proteins related to tyrosinase are known to exist in mammals, and include TRP-1 (TYRP1) [PUBMED:7813420], which is responsible for the conversion of 5,6-dihydro-xyindole-2-carboxylic acid (DHICA) to indole-5,6-quinone-2-carboxylic acid; and TRP-2 (TYRP2) [PUBMED:1537334], which is the melanogenic enzyme DOPAchrome tautomerase (EC) that catalyzes the conversion of DOPAchrome to DHICA. TRP-2 differs from tyrosinases and TRP-1 in that it binds two zinc ions instead of copper [PUBMED:7980602]. Other proteins that belong to this family are plant polyphenol oxidases (PPO) (EC), which catalyze the oxidation of mono- and o-diphenols to o-diquinones [PUBMED:1391768]; and Caenorhabditis elegans hypothetical protein C02C2.1.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Di-copper (CL0205), which has the following description:

This superfamily includes tyrosinases and hemocyanins that share a di-copper centre [1].

The clan contains the following 2 members:

Hemocyanin_M Tyrosinase

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(127)
Full
(3739)
Representative proteomes NCBI
(3969)
Meta
(31)
RP15
(335)
RP35
(609)
RP55
(862)
RP75
(1016)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(127)
Full
(3739)
Representative proteomes NCBI
(3969)
Meta
(31)
RP15
(335)
RP35
(609)
RP55
(862)
RP75
(1016)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(127)
Full
(3739)
Representative proteomes NCBI
(3969)
Meta
(31)
RP15
(335)
RP35
(609)
RP55
(862)
RP75
(1016)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: tyrosinase;
Type: Domain
Author: Sonnhammer ELL, Griffiths-Jones SR
Number in seed: 127
Number in full: 3739
Average length of the domain: 141.50 aa
Average identity of full alignment: 35 %
Average coverage of the sequence by the domain: 41.98 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 22.3 22.3
Trusted cut-off 22.3 22.3
Noise cut-off 22.0 22.2
Model length: 223
Family (HMM) version: 15
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

Tyrosinase MelC1

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Tyrosinase domain has been found. There are 58 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...