Summary: Hexokinase
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "Hexokinase". More...
Hexokinase Edit Wikipedia article
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Hexokinase Provide feedback
Hexokinase ( EC:2.7.1.1) contains two structurally similar domains represented by this family and PF03727. Some members of the family have two copies of each of these domains.
Literature references
-
Bennett WS Jr, Steitz TA; , J Mol Biol 1980;140:211-230.: Structure of a complex between yeast hexokinase A and glucose. II. Detailed comparisons of conformation and active site configuration with the native hexokinase B monomer and dimer. PUBMED:7001032 EPMC:7001032
-
Steitz TA; , J Mol Biol 1971;61:695-700.: Structure of yeast hexokinase-B. I. Preliminary x-ray studies and subunit structure. PUBMED:5133118 EPMC:5133118
Internal database links
SCOOP: | ROK |
External database links
HOMSTRAD: | hexokinase |
PRINTS: | PR00475 |
PROSITE: | PDOC00370 |
SCOP: | 1cza |
This tab holds annotation information from the InterPro database.
InterPro entry IPR022672
Hexokinase is an important enzyme that catalyses the ATP-dependent conversion of aldo- and keto-hexose sugars to the hexose-6-phosphate (H6P). The enzyme can catalyse this reaction on glucose, fructose, sorbitol and glucosamine, and as such is the first step in a number of metabolic pathways [PUBMED:1783373]. The addition of a phosphate group to the sugar acts to trap it in a cell, since the negatively charged phosphate cannot easily traverse the plasma membrane.
The enzyme is widely distributed in eukaryotes. There are three isozymes of hexokinase in yeast (PI, PII and glucokinase): isozymes PI and PII phosphorylate both aldo- and keto-sugars; glucokinase is specific for aldo-hexoses. All three isozymes contain two domains [PUBMED:1783373]. Structural studies of yeast hexokinase reveal a well-defined catalytic pocket that binds ATP and hexose, allowing easy transfer of the phosphate from ATP to the sugar [PUBMED:10749890]. Vertebrates contain four hexokinase isozymes, designated I to IV, where types I to III contain a duplication of the two-domain yeast-type hexokinases. Both the N- and C-terminal halves bind hexose and H6P, though in types I an III only the C-terminal half supports catalysis, while both halves support catalysis in type II. The N-terminal half is the regulatory region. Type IV hexokinase is similar to the yeast enzyme in containing only the two domains, and is sometimes incorrectly referred to as glucokinase.
The different vertebrate isozymes differ in their catalysis, localisation and regulation, thereby contributing to the different patterns of glucose metabolism in different tissues [PUBMED:12756287]. Whereas types I to III can phosphorylate a variety of hexose sugars and are inhibited by glucose-6-phosphate (G6P), type IV is specific for glucose and shows no G6P inhibition. Type I enzyme may have a catabolic function, producing H6P for energy production in glycolysis; it is bound to the mitochondrial membrane, which enables the coordination of glycolysis with the TCA cycle. Types II and III enzyme may have anabolic functions, providing H6P for glycogen or lipid synthesis. Type IV enzyme is found in the liver and pancreatic beta-cells, where it is controlled by insulin (activation) and glucagon (inhibition). In pancreatic beta-cells, type IV enzyme acts as a glucose sensor to modify insulin secretion. Mutations in type IV hexokinase have been associated with diabetes mellitus.
Hexokinase (EC), a fructose and glucose phosphorylating enzyme, contains two structurally similar domains represented by this family and . Some hexokinases have two copies of each of these domains. This entry represents the N-terminal domain.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Molecular function | ATP binding (GO:0005524) |
phosphotransferase activity, alcohol group as acceptor (GO:0016773) | |
Biological process | carbohydrate metabolic process (GO:0005975) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan Actin_ATPase (CL0108), which has the following description:
The actin-like ATPase domain forms an alpha/beta canonical fold. The domain can be subdivided into 1A, 1B, 2A and 2B subdomains. Subdomains 1A and 1B share the same RNAseH-like fold (a five-stranded beta-sheet decorated by a number of alpha-helices). Domains 1A and 2A are conserved in all members of this superfamily, whereas domain 1B and 2B have a variable structure and are even missing from some homologues [1]. Within the actin-like ATPase domain the ATP-binding site is highly conserved. The phosphate part of the ATP is bound in a cleft between subdomains 1A and 2A, whereas the adenosine moiety is bound to residues from domains 2A and 2B[1].
The clan contains the following 34 members:
Acetate_kinase Actin Actin_micro ALP_N AnmK BcrAD_BadFG Carbam_trans_N DDR DUF1464 DUF2229 EutA FGGY_C FGGY_N FtsA Fumble GDA1_CD39 Glucokinase Hexokinase_1 Hexokinase_2 HGD-D HSP70 Hydant_A_N Hydantoinase_A HypF_C MreB_Mbl MutL Pan_kinase PilM_2 Ppx-GppA RACo_C_ter ROK StbA T2SSL TsaDAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (387) |
Full (6723) |
Representative proteomes | UniProt (11614) |
NCBI (14036) |
Meta (6) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (740) |
RP35 (2494) |
RP55 (4726) |
RP75 (7078) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (387) |
Full (6723) |
Representative proteomes | UniProt (11614) |
NCBI (14036) |
Meta (6) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (740) |
RP35 (2494) |
RP55 (4726) |
RP75 (7078) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Prosite |
Previous IDs: | hexokinase; |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Sonnhammer ELL |
Number in seed: | 387 |
Number in full: | 6723 |
Average length of the domain: | 191.40 aa |
Average identity of full alignment: | 36 % |
Average coverage of the sequence by the domain: | 40.35 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 199 | ||||||||||||
Family (HMM) version: | 22 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Interactions
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Hexokinase_1 domain has been found. There are 135 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...