Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
4237  structures 2989  species 54  interactions 540137  sequences 5972  architectures

Family: WD40 (PF00400)

Summary: WD domain, G-beta repeat

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "WD40 repeat". More...

WD40 repeat Edit Wikipedia article

WD domain, G-beta repeat
1erj 7bladed beta propeller.png
Ribbon diagram of the C-terminal WD40 domain of Tup1 (a transcriptional corepressor in yeast), which adopts a 7-bladed beta-propeller fold. Ribbon is colored from blue (N-terminus) to red (C-terminus).[1]
Symbol WD40
Pfam PF00400
Pfam clan CL0186
InterPro IPR001680
SCOP 1gp2
CDD cd00200

The WD40 repeat (also known as the WD or beta-transducin repeat) is a short structural motif of approximately 40 amino acids, often terminating in a tryptophan-aspartic acid (W-D) dipeptide.[2] Tandem copies of these repeats typically fold together to form a type of circular solenoid protein domain called the WD40 domain.


WD40 domain-containing proteins have 4 to 16 repeating units, all of which are thought to form a circularised beta-propeller structure (see figure to the right).[3][4] The WD40 domain is composed of several repeats, a variable region of around 20 residues at the beginning followed by a more common repeated set of residues. These repeats typically form a four stranded anti-parallel beta sheet or blade. These blades come together to form a propeller with the most common being a 7 bladed beta propeller. The blades interlock so that the last beta strand of one repeat forms with the first three of the next repeat to form the 3D blade structure.


WD40-repeat proteins are a large family found in all eukaryotes and are implicated in a variety of functions ranging from signal transduction and transcription regulation to cell cycle control, autophagy and apoptosis.[5] The underlying common function of all WD40-repeat proteins is coordinating multi-protein complex assemblies, where the repeating units serve as a rigid scaffold for protein interactions. The specificity of the proteins is determined by the sequences outside the repeats themselves. Examples of such complexes are G proteins (beta subunit is a beta-propeller), TAFII transcription factor, and E3 ubiquitin ligase.[3][4]


According to the initial analysis of the human genome WD40 repeats are the eighth largest family of proteins. In all 277 proteins were identified to contain them.[6] Human genes encoding proteins containing this domain include:

Human WDR genes and associated diseases
WDR gene other gene names NCBI Entrez
Gene ID
Human disease associated with mutations
WDR1 AIP1; NORI-1; HEL-S-52 9948
WDR3 DIP2; UTP12 10885
WDR4 TRM82; TRMT82 10785
WDR5 SWD3; BIG-3; CFAP89 11091
WDR6 11180
WDR7 TRAG; KIAA0541; Rabconnectin 3 beta 23335
WDR8 WRAP73 49856
WDR9 BRWD1; N143; C21orf107 54014
WDR10 IFT122; CED; SPG; CED1; WDR10p; WDR140 55764 Sensenbrenner syndrome
WDR11 DR11; HH14; BRWD2; WDR15 55717 Kallmann syndrome
WDR12 YTM1 55759
WDR13 MG21 64743
WDR16 CFAP52; WDRPUH 146845
WDR17 116966
WDR18 Ipi3 57418
WDR19 ATD5; CED4; DYF-2; ORF26; Oseg6; PWDMP; SRTD5; IFT144; NPHP13 57728 Sensenbrenner syndrome, Jeune syndrome
WDR20 DMR 91833
WDR21 DCAF4; WDR21A 26094
WDR22 DCAF5; BCRG2; BCRP2 8816
WDR23 DCAF11; GL014; PRO2389 80344
WDR24 JFP7; C16orf21 84219
WDR25 C14orf67 79446
WDR26 CDW2; GID7; MIP2 80232
WDR27 253769
WDR28 GRWD1; CDW4; GRWD; RRB1 83743
WDR29 SPAG16; PF20 79582
WDR30 ATG16L1; IBD10; APG16L; ATG16A; ATG16L 55054 Crohn’s disease
WDR31 114987
WDR32 DCAF10 79269
WDR33 NET14; WDC146 55339
WDR34 DIC5; FAP133; SRTD11 89891 Jeune syndrome
WDR35 CED2; IFTA1; SRTD7; IFT121 57539 Sensenbrenner syndrome
WDR36 GLC1G; UTP21; TAWDRP; TA-WDRP 134430 Primary Open Angle Glaucoma
WDR37 22884
WDR38 401551
WDR39 CIAO1; CIA1 9391
WDR40A DCAF12; CT102; TCC52; KIAA1892 25853
WDR41 MSTP048 55255
WDR43 UTP5; NET12 23160
WDR44 RPH11; RAB11BP 54521
WDR45 JM5; NBIA4; NBIA5; WDRX1; WIPI4; WIPI-4 11152 Beta-propeller protein-associated neurodegeneration (BPAN)
WDR46 UTP7; BING4; FP221; C6orf11 9277
WDR47 NEMITIN; KIAA0893 22911
WDR48 P80; UAF1; SPG60 57599
WDR49 151790
WDR50 UTP18; CGI-48 51096
WDR52 CFAP44 55779
WDR53 348793
WDR54 84058
WDR55 54853
WDR56 IFT80; ATD2; SRTD2 57560 Jeune syndrome
WDR58 THOC6; BBIS; fSAP35 79228
WDR59 FP977 79726
WDR60 SRPS6; SRTD8; FAP163 55112 Jeune syndrome
WDR61 SKI8; REC14 80349
WDR62 MCPH2; C19orf14 284403 microcephaly
WDR63 DIC3; NYD-SP29 126820
WDR64 128025
WDR65 CFAP57; VWS2 149465 Van der Woude syndrome
WDR66 CaM-IP4 144406
WDR67 TBC1D31; Gm85 93594
WDR68 DCAF7; AN11; HAN11; SWAN-1 10238
WDR69 DAW1; ODA16 164781
WDR70 55100
WDR71 PAAF1; PAAF; Rpn14 80227
WDR72 AI2A3 256764 Amelogenesis imperfecta
WDR73 HSPC264 84942
WDR74 54663
WDR75 NET16; UTP17 84128
WDR76 CDW14 79968
WDR77 p44; MEP50; MEP-50; HKMT1069; Nbla10071; p44/Mep50 79084
WDR78 DIC4 79819
WDR79 WRAP53; DKCB3; TCAB1 55135
WDR80 ATG16L; ATG16B 89849
WDR81 CAMRQ2; PPP1R166 124997 cerebellar ataxia, mental retardation, and dysequilibrium syndrome-2
WDR82 SWD2; MST107; WDR82A; MSTP107; PRO2730; TMEM113; PRO34047 80335
WDR83 MORG1 84292
WDR84 PAK1IP1; PIP1; MAK11 55003
WDR85 DPH7; RRT2; C9orf112 92715
WDR86 349136
WDR87 NYD-SP11 83889
WDR88 PQWD 126248
WDR89 MSTP050; C14orf150 112840
WDR90 C16orf15; C16orf16; C16orf17; C16orf18; C16orf19 197335
WDR91 HSPC049 29062
WDR92 MONAD 116143
WDR93 56964
WDR94 AMBRA1; DCAF3 55626
WDR96 CFAP43; C10orf79 80217

See also


  1. ^ PDB: 1erj​; Sprague ER, Redd MJ, Johnson AD, Wolberger C (June 2000). "Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast". EMBO J. 19 (12): 3016–27. doi:10.1093/emboj/19.12.3016. PMC 203344Freely accessible. PMID 10856245. 
  2. ^ Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (September 1994). "The ancient regulatory-protein family of WD-repeat proteins". Nature. 371 (6495): 297–300. doi:10.1038/371297a0. PMID 8090199. 
  3. ^ a b Smith TF, Gaitatzes C, Saxena K, Neer EJ (May 1999). "The WD40 repeat: a common architecture for diverse functions". Trends Biochem. Sci. 24 (5): 181–5. doi:10.1016/S0968-0004(99)01384-5. PMID 10322433. 
  4. ^ a b Li D, Roberts R (December 2001). "WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases". Cell. Mol. Life Sci. 58 (14): 2085–97. doi:10.1007/PL00000838. PMID 11814058. 
  5. ^ Stirnimann CU, Petsalaki E, Russell RB, Müller CW (May 2010). "WD40 proteins propel cellular networks". Trends Biochem. Sci. 35 (10): 565–74. doi:10.1016/j.tibs.2010.04.003. PMID 20451393. 
  6. ^ Lander ES, Linton LM, Birren B, et al. (February 2001). "Initial sequencing and analysis of the human genome". Nature. 409 (6822): 860–921. doi:10.1038/35057062. PMID 11237011. 

External links

This article incorporates text from the public domain Pfam and InterPro IPR001680

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

WD domain, G-beta repeat Provide feedback

No Pfam abstract.

Literature references

  1. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF; , Nature 1994;371:297-300.: The ancient regulatory-protein family of WD-repeat proteins. PUBMED:8090199 EPMC:8090199

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001680

WD-40 repeats (also known as WD or beta-transducin repeats) are short ~40 amino acid motifs, often terminating in a Trp-Asp (W-D) dipeptide. WD40 repeats usually assume a 7-8 bladed beta-propeller fold, but proteins have been found with 4 to 16 repeated units, which also form a circularised beta-propeller structure. WD-repeat proteins are a large family found in all eukaryotes and are implicated in a variety of functions ranging from signal transduction and transcription regulation to cell cycle control and apoptosis. Repeated WD40 motifs act as a site for protein-protein interaction, and proteins containing WD40 repeats are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. The specificity of the proteins is determined by the sequences outside the repeats themselves. Examples of such complexes are G proteins (beta subunit is a beta-propeller), TAFII transcription factor, and E3 ubiquitin ligase [PUBMED:11814058, PUBMED:10322433]. In Arabidopsis spp., several WD40-containing proteins act as key regulators of plant-specific developmental events.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Beta_propeller (CL0186), which has the following description:

This large clan contains proteins that contain beta propellers. These are composed of between 6 and 8 repeats. The individual repeats are composed of a four stranded sheet. The clan includes families such as WD40 Pfam:PF00400 where the individual repeats are modeled. The clan also includes families where the entire propeller is modeled such as Pfam:PF02239 usually because the individual repeats are not discernible. These proteins carry out a very wide diversity of functions including catalysis.

The clan contains the following 74 members:

ANAPC4_WD40 Arylesterase Arylsulfotran_2 Arylsulfotrans BBS2_Mid Beta_propel Coatomer_WDAD CPSF_A CyRPA Cytochrom_D1 DPPIV_N DUF1513 DUF1668 DUF2415 DUF4221 DUF4934 DUF5046 DUF5050 DUF5122 DUF5128 DUF839 eIF2A FG-GAP FG-GAP_2 Frtz Ge1_WD40 Glu_cyclase_2 Gmad1 GSDH IKI3 Itfg2 Kelch_1 Kelch_2 Kelch_3 Kelch_4 Kelch_5 Kelch_6 Lactonase Ldl_recept_b Lgl_C LVIVD Me-amine-dh_H MRJP Nbas_N Neisseria_PilC NHL Nucleoporin_N Nup160 PALB2_WD40 PD40 Pectate_lyase22 Peptidase_S9_N PHTB1_N Phytase-like PQQ PQQ_2 PQQ_3 RAG2 RCC1 RCC1_2 Reg_prop SBBP SBP56 SdiA-regulated SGL Str_synth TcdB_toxin_midN TolB_like VCBS VID27 WD40 WD40_3 WD40_4 WD40_like


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View  View  View 
HTML View                 
PP/heatmap 1                

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download       Download  
Gzipped Download   Download   Download   Download   Download   Download       Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_2 (release 1.0)
Previous IDs: G-beta;
Type: Repeat
Sequence Ontology: SO:0001068
Author: Finn RD
Number in seed: 1465
Number in full: 540137
Average length of the domain: 39.40 aa
Average identity of full alignment: 24 %
Average coverage of the sequence by the domain: 19.56 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 27.0 12.1
Trusted cut-off 27.0 12.1
Noise cut-off 26.9 12.0
Model length: 38
Family (HMM) version: 32
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the WD40 domain has been found. There are 4237 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...