Summary: Glutaredoxin
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
This is the Wikipedia entry entitled "Glutaredoxin". More...
Glutaredoxin Edit Wikipedia article
Glutaredoxin | |||||||||
---|---|---|---|---|---|---|---|---|---|
![]() | |||||||||
Identifiers | |||||||||
Symbol | Glutaredoxin | ||||||||
Pfam | PF00462 | ||||||||
Pfam clan | CL0172 | ||||||||
InterPro | IPR002109 | ||||||||
PROSITE | PDOC00173 | ||||||||
SCOPe | 1kte / SUPFAM | ||||||||
OPM superfamily | 131 | ||||||||
OPM protein | 1z9h | ||||||||
CDD | cd02066 | ||||||||
|
Glutaredoxins[1][2][3] are small redox enzymes of approximately one hundred amino-acid residues that use glutathione as a cofactor. Glutaredoxins are oxidized by substrates, and reduced non-enzymatically by glutathione. In contrast to thioredoxins, which are reduced by thioredoxin reductase, no oxidoreductase exists that specifically reduces glutaredoxins. Instead, glutaredoxins are reduced by the oxidation of glutathione. Oxidized glutathione is then regenerated by glutathione reductase. Together these components compose the glutathione system.[4]
Like thioredoxin, which functions in a similar way, glutaredoxin possesses an active centre disulfide bond.[5] It exists in either a reduced or an oxidized form where the two cysteine residues are linked in an intramolecular disulfide bond. Glutaredoxins function as electron carriers in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase.[4] Moreover, GRX act in antioxidant defense by reducing dehydroascorbate, peroxiredoxins, and methionine sulfoxide reductase. Beside their function in antioxidant defense, bacterial and plant GRX were shown to bind iron-sulfur clusters and to deliver the cluster to enzymes on demand.[6]
Contents
GRXs in viruses
Glutaredoxin has been sequenced in a variety of viruses. On the basis of extensive sequence similarity, it has been proposed[7] that Vaccinia virus protein O2L is, it seems, a glutaredoxin. Bacteriophage T4 thioredoxin seems to be evolution-related. In position 5 of the pattern T4, thioredoxin has Val instead of Pro.
GRXs in plants
Approximately 30 GRX isoforms are described in the model plant Arabidopsis thaliana and 48 in Oryza sativa L. According to their redox-active centre, they are subgrouped in six classes of the CSY[C/S]-, CGFS-, CC-type and 3 groups with additional domain of unknown function. The CC-type GRXs are only found in higher plants. In Arabidopsis GRXs are involved in flower development and Salicylic acid signalling.[6]
GRXs in skin care
Glutaredoxin is used as an antioxidant [8] in skin care products in conjunction with thioredoxin and glutathione.
Subfamilies
Human proteins containing this domain
GLRX; GLRX2; GLRX3; GLRX5; PTGES2
References
- ^ Holmgren A, Gleason FK (1988). "Thioredoxin and related proteins in procaryotes". FEMS Microbiol. Rev. 4 (4): 271–297. doi:10.1111/j.1574-6968.1988.tb02747.x. PMID 3152490.
- ^ Holmgren A (1988). "Thioredoxin and glutaredoxin: small multi-functional redox proteins with active-site disulfide bonds". Biochem. Soc. Trans. 16 (2): 95–96. PMID 3286320.
- ^ Holmgren A (1989). "Thioredoxin and glutaredoxin systems". J. Biol. Chem. 264 (24): 13963–13966. PMID 2668278.
- ^ a b Holmgren A, Fernandes AP (2004). "Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system". Antioxid. Redox Signal. 6 (1): 63–74. doi:10.1089/152308604771978354. PMID 14713336.
- ^ Nilsson L, Foloppe N (2004). "The glutaredoxin -C-P-Y-C- motif: influence of peripheral residues". Structure. 12 (2): 289–300. doi:10.1016/j.str.2004.01.009. PMID 14962389.
- ^ a b Rouhier N, Lemaire SD, Jacquot JP (2008). "The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation". Annu Rev Plant Biol. 59: 143–66. doi:10.1146/annurev.arplant.59.032607.092811. PMID 18444899.
- ^ Johnson GP, Goebel SJ, Perkus ME, Davis SW, Winslow JP, Paoletti E (1991). "Vaccinia virus encodes a protein with similarity to glutaredoxins". Virology. 181 (1): 378–381. doi:10.1016/0042-6822(91)90508-9. PMID 1994586.
- ^ https://skinactives.com/glutaredoxin-grx/
External links
- Enzyme database entry
- Glutaredoxins at the US National Library of Medicine Medical Subject Headings (MeSH)
This EC 1.20 enzyme-related article is a stub. You can help Wikipedia by expanding it. |
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Glutaredoxin Provide feedback
No Pfam abstract.
Internal database links
SCOOP: | ABC_transp_aux AhpC-TSA ArsC DIM1 DSBA DUF2007 DUF3088 DUF5039 DUF836 DUF953 GST_N GST_N_2 GST_N_3 GST_N_4 HyaE KaiB OST3_OST6 Redoxin SH3BGR Thioredoxin Thioredoxin_2 Thioredoxin_3 Thioredoxin_6 Thioredoxin_7 Thioredoxin_8 Thioredoxin_9 TraF |
Similarity to PfamA using HHSearch: | Thioredoxin GST_N ArsC SH3BGR DUF836 Thioredoxin_2 Thioredoxin_3 GST_N_2 GST_N_3 TraF |
External database links
HOMSTRAD: | thiored |
PROSITE: | PDOC00173 |
SCOP: | 1kte |
This tab holds annotation information from the InterPro database.
InterPro entry IPR002109
Glutaredoxins [PUBMED:3152490, PUBMED:3286320, PUBMED:2668278], also known as thioltransferases (disulphide reductases, are small proteins of approximately one hundred amino-acid residues which utilise glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system [PUBMED:14713336].
Glutaredoxin functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. Like thioredoxin (TRX), which functions in a similar way, glutaredoxin possesses an active centre disulphide bond [PUBMED:14962389]. It exists in either a reduced or an oxidized form where the two cysteine residues are linked in an intramolecular disulphide bond. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates [PUBMED:9860827, PUBMED:10493864, PUBMED:15814611, PUBMED:15706083]. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress.
Glutaredoxin has been sequenced in a variety of species. On the basis of extensive sequence similarity, it has been proposed [PUBMED:1994586] that Vaccinia virus protein O2L is most probably a glutaredoxin. Finally, it must be noted that Bacteriophage T4 thioredoxin seems also to be evolutionary related. In position 5 of the pattern T4 thioredoxin has Val instead of Pro.
This entry represents Glutaredoxin.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Molecular function | protein disulfide oxidoreductase activity (GO:0015035) |
electron transfer activity (GO:0009055) | |
Biological process | cell redox homeostasis (GO:0045454) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan Thioredoxin (CL0172), which has the following description:
This clan contains families related to the thioredoxin family. Thioredoxins are small enzymes that are involved in redox reactions via the reversible oxidation of an active centre disulfide bond. The thioredoxin fold consists of a 3 layer alpha/beta/alpha sandwich and a central beta sheet.
The clan contains the following 62 members:
2Fe-2S_thioredx AhpC-TSA AhpC-TSA_2 ArsC ArsD Calsequestrin DIM1 DSBA DUF1223 DUF1462 DUF1525 DUF1687 DUF2703 DUF2847 DUF4174 DUF836 DUF899 DUF953 ERp29_N GILT Glutaredoxin GSHPx GST_N GST_N_2 GST_N_3 GST_N_4 GST_N_5 HyaE KaiB L51_S25_CI-B8 MRP-S23 MRP-S25 OST3_OST6 Phe_hydrox_dim Phosducin QSOX_Trx1 Rdx Redoxin SCO1-SenC SelP_N Sep15_SelM SH3BGR T4_deiodinase Thioredox_DsbH Thioredoxin Thioredoxin_11 Thioredoxin_12 Thioredoxin_13 Thioredoxin_14 Thioredoxin_15 Thioredoxin_16 Thioredoxin_2 Thioredoxin_3 Thioredoxin_4 Thioredoxin_5 Thioredoxin_6 Thioredoxin_7 Thioredoxin_8 Thioredoxin_9 Tom37 TraF YtfJ_HI0045Alignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (236) |
Full (24496) |
Representative proteomes | UniProt (77491) |
NCBI (101789) |
Meta (4864) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (2975) |
RP35 (8922) |
RP55 (15617) |
RP75 (23850) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (236) |
Full (24496) |
Representative proteomes | UniProt (77491) |
NCBI (101789) |
Meta (4864) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (2975) |
RP35 (8922) |
RP55 (15617) |
RP75 (23850) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Prosite & Pfam-B_3081 (Release 8.0) |
Previous IDs: | glutaredoxin; |
Type: | Domain |
Sequence Ontology: | SO:0000417 |
Author: |
Finn RD |
Number in seed: | 236 |
Number in full: | 24496 |
Average length of the domain: | 62.80 aa |
Average identity of full alignment: | 24 % |
Average coverage of the sequence by the domain: | 36.43 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 60 | ||||||||||||
Family (HMM) version: | 25 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Interactions
Structures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Glutaredoxin domain has been found. There are 146 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...