Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
210  structures 3  species 1  interaction 20  sequences 1  architecture

Family: Hirudin (PF00713)

Summary: Hirudin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Hirudin". More...

Hirudin Edit Wikipedia article

Structure of Hirudin in complex with Thrombin.[1]
PDB 1dwc EBI.jpg
crystallographic analysis at 3.0-angstroms resolution of the binding to human thrombin of four active site-directed inhibitors
Symbol Hirudin
Pfam PF00713
InterPro IPR000429
SCOP 4htc

Hirudin is a naturally occurring peptide in the salivary glands of medicinal leeches (such as Hirudo medicinalis) that has a blood anticoagulant property. This is fundamental for the leeches’ alimentary habit of hematophagy, since it keeps the blood flowing after the initial phlebotomy performed by the worm on the host’s skin.


During his years in Birmingham and Edinburgh, John Berry Haycraft had been actively engaged in research and published papers on the coagulation of blood, and in 1884, he discovered that the leech secreted a powerful anticoagulant, which he named hirudin, although it was not isolated until the 1950s, nor its structure fully determined until 1976. Full length hirudin is made up of 65 amino acids. These amino acids are organised into a compact N-terminal domain containing three disulfide bonds and a C-terminal domain that is completely disordered when the protein is un-complexed in solution.[2][3] Amino acid residues 1-3 form a parallel beta- strand with residues 214-217 of thrombin, the nitrogen atom of residue 1 making a hydrogen bond with the Ser-195 O gamma atom of the catalytic site. The C-terminal domain makes numerous electrostatic interactions with an anion-binding exosite of thrombin, while the last five residues are in a helical loop that forms many hydrophobic contacts.[4] Natural hirudin contains a mixture of various isoforms of the protein. However, recombinant techniques can be used to produce homogeneous preparations of hirudin.[5]

Biological activity

A key event in the final stages of blood coagulation is the conversion of fibrinogen into fibrin by the serine protease enzyme thrombin.[6] Thrombin is produced from prothrombin, by the action of an enzyme, prothrombinase (Factor Xa along with Factor Va as a cofactor), in the final states of coagulation. Fibrin is then cross linked by factor XIII (Fibrin Stabilizing Factor) to form a blood clot. The principal inhibitor of thrombin in normal blood circulation is antithrombin.[5] Similar to antithrombin III, the anticoagulatant activity of hirudin is based on its ability to inhibit the procoagulant activity of thrombin.

Hirudin is the most potent natural inhibitor of thrombin. Unlike antithrombin, hirudin binds to and inhibits only the activity of thrombin, with a specific activity on fibrinogen.[5] Therefore, hirudin prevents or dissolves the formation of clots and thrombi (i.e., it has a thrombolytic activity), and has therapeutic value in blood coagulation disorders, in the treatment of skin hematomas and of superficial varicose veins, either as an injectable or a topical application cream. In some aspects, hirudin has advantages over more commonly used anticoagulants and thrombolytics, such as heparin, as it does not interfere with the biological activity of other serum proteins, and can also act on complexed thrombin.

It is difficult to extract large amounts of hirudin from natural sources, so a method for producing and purifying this protein using recombinant biotechnology has been developed. This has led to the development and marketing of a number of hirudin-based anticoagulant pharmaceutical products, such as lepirudin (Refludan), hirudin derived from Hansenula (Thrombexx, Extrauma) and desirudin (Revasc/Iprivask). Several other direct thrombin inhibitors are derived chemically from hirudin.

Drug discontinuation

As of May 31, 2012, Refludan production and sales where discontinued as more effective drugs with less severe side effects emerged. On a note left by Bayer HealthCare we can assess the most frequent side effects experienced by this drug.[7] However this does not disprove hirudin as a possible treatment.[8]

See also


  1. ^ PDB: 4HTC
  2. ^ Folkers PJ, Clore GM, Driscoll PC, Dodt J, Köhler S, Gronenborn AM (Mar 1989). "Solution structure of recombinant hirudin and the Lys-47----Glu mutant: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study". Biochemistry 28 (6): 2601–2617. doi:10.1021/bi00432a038. PMID 2567183. 
  3. ^ Haruyama H, Wüthrich K (May 1989). "Conformation of recombinant desulfatohirudin in aqueous solution determined by nuclear magnetic resonance". Biochemistry 28 (10): 4301–4312. doi:10.1021/bi00436a027. PMID 2765488. 
  4. ^ Rydel TJ, Ravichandran KG, Tulinsky A, Bode W, Huber R, Roitsch C, et al. (Jul 1990). "The structure of a complex of recombinant hirudin and human alpha-thrombin". Science 249 (4966): 277–80. doi:10.1126/science.2374926. PMID 2374926. 
  5. ^ a b c Rydel TJ, Tulinsky A, Bode W, Huber R (Sep 1991). "Refined structure of the hirudin-thrombin complex". Journal of Molecular Biology 221 (2): 583–601. doi:10.1016/0022-2836(91)80074-5. PMID 1920434. 
  6. ^ Fenton JW, Ofosu FA, Brezniak DV, Hassouna HI (1998). "Thrombin and antithrombotics". Seminars in Thrombosis and Hemostasis 24 (2): 87–91. doi:10.1055/s-2007-995828. PMID 9579630. 
  7. ^ Germino, Joseph (May 31, 2012). "Discontinuation of Refludan® [lepirudin (rDNA) for injection]" (PDF). Bayer HealthCare. 
  8. ^ Theodore E. Warkentin, Andreas Greinacher (2008). "The direct thrombin inhibitor hirudin" (PDF). Schattauer GmbH, Stuttgart. 

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Hirudin Provide feedback

No Pfam abstract.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000429

The hirudin family are proteinase inhibitors that belong to MEROPS inhibitor family I14, clan IM. Hirudin is a potent thrombin inhibitor secreted by the salivary glands of the Hirudinaria manillensis (Buffalo leech) and Hirudo medicinalis (Medicinal leech) [PUBMED:3513162]. It forms a stable non-covalent complex with alpha-thrombin, thereby abolishing its ability to cleave fibrinogen.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View          View   
HTML View  View             
PP/heatmap 1 View             
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download           Download    
Gzipped Download   Download           Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_707 (release 2.1)
Previous IDs: none
Type: Domain
Author: Bateman A
Number in seed: 8
Number in full: 20
Average length of the domain: 57.20 aa
Average identity of full alignment: 81 %
Average coverage of the sequence by the domain: 94.47 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 80369284 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.0 25.0
Trusted cut-off 34.7 34.7
Noise cut-off 20.3 17.7
Model length: 64
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


There is 1 interaction for this family. More...



For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Hirudin domain has been found. There are 210 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...