Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
24  structures 92  species 0  interactions 198  sequences 2  architectures

Family: IL4 (PF00727)

Summary: Interleukin 4

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Interleukin 4". More...

Interleukin 4 Edit Wikipedia article

Interleukin 4

Crystal structure of human IL-4 (2INT)
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols IL4; BCGF-1; BCGF1; BSF-1; BSF1; IL-4
External IDs OMIM147780 MGI96556 HomoloGene491 GeneCards: IL4 Gene
RNA expression pattern
PBB GE IL4 207539 s at tn.png
PBB GE IL4 207538 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 3565 16189
Ensembl ENSG00000113520 ENSMUSG00000000869
UniProt P05112 P07750
RefSeq (mRNA) NM_000589 NM_021283
RefSeq (protein) NP_000580 NP_067258
Location (UCSC) Chr 5:
132.01 – 132.02 Mb
Chr 11:
53.6 – 53.62 Mb
PubMed search [1] [2]
Interleukin 4
PDB 1itm EBI.jpg
analysis of the solution structure of human interleukin 4 determined by heteronuclear three-dimensional nuclear magnetic resonance techniques
Identifiers
Symbol IL4
Pfam PF00727
Pfam clan CL0053
InterPro IPR002354
PROSITE PDOC00655
SCOP 2int
SUPERFAMILY 2int

Interleukin 4, abbreviated IL-4, is a cytokine that induces differentiation of naive helper T cells (Th0 cells) to Th2 cells. Upon activation by IL-4, Th2 cells subsequently produce additional IL-4. The cell that initially produces IL-4, thus inducing Th0 differentiation, has not been identified, but recent studies suggest that basophils may be the effector cell.[1] It is closely related and has functions similar to Interleukin 13.

Function[edit]

It has many biological roles, including the stimulation of activated B-cell and T-cell proliferation, and the differentiation of B cells into plasma cells. It is a key regulator in humoral and adaptive immunity. IL-4 induces B-cell class switching to IgE, and up-regulates MHC class II production. IL-4 decreases the production of Th1 cells, macrophages, IFN-gamma, and dendritic cell IL-12.

Overproduction of IL-4 is associated with allergies.[2]

Inflammation and wound repair[edit]

Tissue macrophages play an important role in chronic inflammation and wound repair. The presence of IL-4 in extravascular tissues promotes alternative activation of macrophages into M2 cells and inhibits classical activation of macrophages into M1 cells. An increase in repair macrophages (M2) is coupled with secretion of IL-10 and TGF-β that result in a diminution of pathological inflammation. Release of arginase, proline, polyaminases and TGF-β by the activated M2 cell is tied with wound repair and fibrosis.[3]

Receptor[edit]

The receptor for Interleukin-4 is known as the IL-4Rα. This receptor exists in 3 different complexes throughout the body. Type 1 receptors are composed of the IL-4Rα subunit with a common γ chain and specifically bind IL-4. Type 2 receptors consist of an IL-4Rα subunit bound to either another IL-4Rα, or a different subunit known as IL-13Rα1. These type 2 receptors have the ability to bind both IL-4 and IL-13, two cytokines with closely related biological functions.[4][5]

Structure[edit]

IL-4 has a compact, globular fold (similar to other cytokines), stabilised by 3 disulphide bonds.[6] One half of the structure is dominated by a 4 alpha-helix bundle with a left-handed twist.[7] The helices are anti-parallel, with 2 overhand connections, which fall into a 2-stranded anti-parallel beta-sheet.[7]

Discovery[edit]

This cytokine was co-discovered by Maureen Howard and William Paul[8] and by Dr. Ellen Vitetta and her research group in 1982.

The nucleotide sequence for human IL-4 was isolated four years later confirming its similarity to a mouse protein called B-cell stimulatory factor-1 (BCSF-1).[9]

Clinical significance[edit]

IL-4 also has been shown to drive mitogenesis, dedifferentiation, and metastasis in rhabdomyosarcoma.[10]

See also[edit]

References[edit]

  1. ^ Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. (2008). "A mechanism for the initiation of allergen-induced T helper type 2 responses". Nat Immunol 9 (3): 310–318. doi:10.1038/ni1558. PMID 18300366. 
  2. ^ Hershey GK, Friedrich MF, Esswein LA, Thomas ML, Chatila TA (December 1997). "The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor". N. Engl. J. Med. 337 (24): 1720–5. doi:10.1056/NEJM199712113372403. PMID 9392697. Lay summary – eurekalert.org. 
  3. ^ Jon Aster, Vinay Kumar, Abul K. Abbas; Nelson Fausto (2009). Robbins & Cotran Pathologic Basis of Disease (8th ed.). Philadelphia: Saunders. p. 54. ISBN 1-4160-3121-9. 
  4. ^ Maes T, Joos GF, Brusselle GG (September 2012). "Targeting interleukin-4 in asthma: lost in translation?". Am. J. Respir. Cell Mol. Biol. 47 (3): 261–70. doi:10.1165/rcmb.2012-0080TR. PMID 22538865. 
  5. ^ Chatila TA (October 2004). "Interleukin-4 receptor signaling pathways in asthma pathogenesis". Trends Mol Med 10 (10): 493–9. doi:10.1016/j.molmed.2004.08.004. PMID 15464449. 
  6. ^ Carr C, Aykent S, Kimack NM, Levine AD (February 1991). "Disulfide assignments in recombinant mouse and human interleukin 4". Biochemistry 30 (6): 1515–23. doi:10.1021/bi00220a011. PMID 1993171. 
  7. ^ a b Walter MR, Cook WJ, Zhao BG, Cameron RP, Ealick SE, Walter RL, Reichert P, Nagabhushan TL, Trotta PP, Bugg CE (October 1992). "Crystal structure of recombinant human interleukin-4". J. Biol. Chem. 267 (28): 20371–6. PMID 1400355. 
  8. ^ Howard M, Paul WE (1982). "Interleukins for B lymphocytes". Lymphokine Res. 1 (1): 1–4. PMID 6985399. 
  9. ^ Yokota T et al. (1986). "Isolation and characterization of a human interleukin cDNA clone, homologous to mouse B-cell stimulatory factor 1, that expresses B-cell- and T-cell-stimulating activities". Proc. Natl. Acad. Sci. U.S.A. 83 (16): 5894–8. doi:10.1073/pnas.83.16.5894. PMC 386403. PMID 3016727. 
  10. ^ Hosoyama T, Aslam MI, Abraham J, Prajapati SI, Nishijo K, Michalek JE, Zarzabal LA, Nelon LD, Guttridge DC, Rubin BP, Keller C (May 2011). "IL-4R Drives Dedifferentiation, Mitogenesis, and Metastasis in Rhabdomyosarcoma". Clin Cancer Res 17 (9): 2757–2766. doi:10.1158/1078-0432.CCR-10-3445. PMC 3087179. PMID 21536546. 

Further reading[edit]

External links[edit]

This article incorporates text from the public domain Pfam and InterPro IPR002354

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Interleukin 4 Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR002354

Cytokines are protein messengers that carry information from cell to cell [PUBMED:8151703]. Interleukin is one such molecule, and participates in several B-cell activation processes: e.g., it enhances production and secretion of IgG1 and IgE [PUBMED:3083412]; it induces expression of class II major histocompatability complex (MHC) molecules on resting B-cells; and it regulates expression of the low affinity Fc receptor for IgE on lymphocytes and monocytes. Interleukin-4 (IL4) has a compact, globular fold (similar to other cytokines), stabilised by 3 disulphide bonds [PUBMED:1993171]. One half of the structure is dominated by a 4 alpha-helix bundle with a left-handed twist [PUBMED:1400355]. The helices are anti-parallel, with 2 overhand connections, which fall into a 2-stranded anti-parallel beta-sheet [PUBMED:1400355].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan 4H_Cytokine (CL0053), which has the following description:

Cytokines are regulatory peptides that can be produced by various cells for communicating and orchestrating the large multicellular system. Cytokines are key mediators of hematopoiesis, immunity, allergy, inflammation, tissue remodeling, angiogenesis, and embryonic development [2]. This superfamily includes both the long and short chain helical cytokines.

The clan contains the following 22 members:

CNTF EPO_TPO Flt3_lig GM_CSF Hormone_1 IFN-gamma IL10 IL11 IL12 IL13 IL2 IL22 IL3 IL34 IL4 IL5 IL6 Interferon Leptin LIF_OSM PRF SCF

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(8)
Full
(198)
Representative proteomes NCBI
(186)
Meta
(0)
RP15
(1)
RP35
(2)
RP55
(3)
RP75
(28)
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(8)
Full
(198)
Representative proteomes NCBI
(186)
Meta
(0)
RP15
(1)
RP35
(2)
RP55
(3)
RP75
(28)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(8)
Full
(198)
Representative proteomes NCBI
(186)
Meta
(0)
RP15
(1)
RP35
(2)
RP55
(3)
RP75
(28)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_833 (release 2.1)
Previous IDs: none
Type: Domain
Author: Bateman A
Number in seed: 8
Number in full: 198
Average length of the domain: 84.40 aa
Average identity of full alignment: 48 %
Average coverage of the sequence by the domain: 78.13 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild --amino -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.5 20.5
Trusted cut-off 20.7 20.5
Noise cut-off 19.5 20.4
Model length: 117
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the IL4 domain has been found. There are 24 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...