Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
67  structures 1291  species 0  interactions 17488  sequences 171  architectures

Family: Septin (PF00735)

Summary: Septin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Septin". More...

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Septin Provide feedback

Members of this family include CDC3, CDC10, CDC11 and CDC12/Septin. Members of this family bind GTP. As regards the septins, these are polypeptides of 30-65kDa with three characteristic GTPase motifs (G-1, G-3 and G-4) that are similar to those of the Ras family. The G-4 motif is strictly conserved with a unique septin consensus of AKAD. Most septins are thought to have at least one coiled-coil region, which in some cases is necessary for intermolecular interactions that allow septins to polymerise to form rod-shaped complexes. In turn, these are arranged into tandem arrays to form filaments. They are multifunctional proteins, with roles in cytokinesis, sporulation, germ cell development, exocytosis and apoptosis [2].

Literature references

  1. Casamayor A, Snyder M; , Mol Cell Biol 2003;23:2762-2777.: Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function. PUBMED:12665577 EPMC:12665577

  2. Kinoshita M; , Genome Biol 2003;4:236.: The septins. PUBMED:14611653 EPMC:14611653

Internal database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR030379

The P-loop guanosine triphosphatases (GTPases) control a multitude of biological processes, ranging from cell division, cell cycling, and signal transduction, to ribosome assembly and protein synthesis. GTPases exert their control by interchanging between an inactive GDP-bound state and an active GTP-bound state, thereby acting as molecular switches. The common denominator of GTPases is the highly conserved guanine nucleotide-binding (G) domain that is responsible for binding and hydrolysis of guanine nucleotides.

Septins are a family of eukaryotic cytoskeletal proteins conserved from yeasts to humans. The septin family belongs to the guanosine-triphosphate (GTP)ase superclass of P-loop nucleoside triphosphate (NTP)ases. Septins participate in diverse cellular functions including cytokinesis, vesicle trafficking, vesicle fusion, axonal guidance and migration, diffusion barrier, scaffolds, pathogenesis and others. Septin monomers form homo- and hetero-oligomeric complexes that assemble into filaments. Structurally all septins have a GTP-binding domain flanked by N- and C-terminal regions of variable length. The GTP-binding domain is the most highly conserved and is characterised by the presence of three of the five classical GTP-binding motifs. The G1 motif (or Walker A box, GxxxxGKS/T) forms the P-loop, which interacts directly with the nucleotide, whereas the G3 (DxxG) and G4 (xKxD) motifs are respectively essential for Mg(2+) binding and for conferring GTP binding specificity over other nucleotides. The basic structure of the septin-type G domain closely resembles the canonical G domain exemplified by Ras, with six beta-strands and five alpha-helices. A unique feature of the septin-type G domain is the presence of four additional elements compared to Ras. These are the helix alpha5' between alpha4 and beta6, the two antiparallel strands beta7 and beta8, and the alpha6 C-terminal helix that points away from the G domain at a 90deg angle relative to the axis of interaction between subunits [ PUBMED:11916378 , PUBMED:16009555 , PUBMED:17637674 , PUBMED:23163726 , PUBMED:24367716 ].

This entry represents the septin-type G domain.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan P-loop_NTPase (CL0023), which has the following description:

AAA family proteins often perform chaperone-like functions that assist in the assembly, operation, or disassembly of protein complexes [2].

The clan contains the following 245 members:

6PF2K AAA AAA-ATPase_like AAA_10 AAA_11 AAA_12 AAA_13 AAA_14 AAA_15 AAA_16 AAA_17 AAA_18 AAA_19 AAA_2 AAA_21 AAA_22 AAA_23 AAA_24 AAA_25 AAA_26 AAA_27 AAA_28 AAA_29 AAA_3 AAA_30 AAA_31 AAA_32 AAA_33 AAA_34 AAA_35 AAA_5 AAA_6 AAA_7 AAA_8 AAA_9 AAA_PrkA ABC_ATPase ABC_tran ABC_tran_Xtn Adeno_IVa2 Adenylsucc_synt ADK AFG1_ATPase AIG1 APS_kinase Arf ArsA_ATPase ATP-synt_ab ATP_bind_1 ATP_bind_2 ATPase ATPase_2 Bac_DnaA BCA_ABC_TP_C Beta-Casp bpMoxR BrxC_BrxD BrxL_ATPase Cas_Csn2 Cas_St_Csn2 CbiA CBP_BcsQ CDC73_C CENP-M CFTR_R CLP1_P CMS1 CoaE CobA_CobO_BtuR CobU cobW CPT CSM2 CTP_synth_N Cytidylate_kin Cytidylate_kin2 DAP3 DEAD DEAD_2 divDNAB DLIC DNA_pack_C DNA_pack_N DNA_pol3_delta DNA_pol3_delta2 DnaB_C dNK DO-GTPase1 DO-GTPase2 DUF1611 DUF2075 DUF2326 DUF2478 DUF257 DUF2813 DUF3584 DUF463 DUF4914 DUF5906 DUF6079 DUF815 DUF835 DUF87 DUF927 Dynamin_N Dynein_heavy Elong_Iki1 ELP6 ERCC3_RAD25_C Exonuc_V_gamma FeoB_N Fer4_NifH Flavi_DEAD FTHFS FtsK_SpoIIIE G-alpha Gal-3-0_sulfotr GBP GBP_C GpA_ATPase GpA_nuclease GTP_EFTU Gtr1_RagA Guanylate_kin GvpD_P-loop HDA2-3 Helicase_C Helicase_C_2 Helicase_C_4 Helicase_RecD HerA_C Herpes_Helicase Herpes_ori_bp Herpes_TK HydF_dimer HydF_tetramer Hydin_ADK IIGP IPPT IPT iSTAND IstB_IS21 KAP_NTPase KdpD Kinase-PPPase Kinesin KTI12 LAP1_C LpxK MCM MeaB MEDS Mg_chelatase Microtub_bd MipZ MMR_HSR1 MMR_HSR1_C MobB MukB Mur_ligase_M MutS_V Myosin_head NACHT NAT_N NB-ARC NOG1 NTPase_1 NTPase_P4 ORC3_N P-loop_TraG ParA Parvo_NS1 PAXNEB PduV-EutP PhoH PIF1 Ploopntkinase1 Ploopntkinase2 Ploopntkinase3 Podovirus_Gp16 Polyoma_lg_T_C Pox_A32 PPK2 PPV_E1_C PRK PSY3 Rad17 Rad51 Ras RecA ResIII RHD3_GTPase RhoGAP_pG1_pG2 RHSP RNA12 RNA_helicase Roc RsgA_GTPase RuvB_N SbcC_Walker_B SecA_DEAD Senescence Septin Sigma54_activ_2 Sigma54_activat SKI SMC_N SNF2-rel_dom SpoIVA_ATPase Spore_III_AA SRP54 SRPRB SulA Sulfotransfer_1 Sulfotransfer_2 Sulfotransfer_3 Sulfotransfer_4 Sulfotransfer_5 Sulphotransf SWI2_SNF2 T2SSE T4SS-DNA_transf TerL_ATPase Terminase_3 Terminase_6N Thymidylate_kin TIP49 TK TmcA_N TniB Torsin TraG-D_C tRNA_lig_kinase TrwB_AAD_bind TsaE UvrB UvrD-helicase UvrD_C UvrD_C_2 Viral_helicase1 VirC1 VirE YqeC Zeta_toxin Zot


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View 
HTML View             
PP/heatmap 1            

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_440 (release 2.1)
Previous IDs: GTP_CDC;
Type: Domain
Sequence Ontology: SO:0000417
Author: Bateman A
Number in seed: 13
Number in full: 17488
Average length of the domain: 239.50 aa
Average identity of full alignment: 39 %
Average coverage of the sequence by the domain: 60.11 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 61295632 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 26.2 26.2
Trusted cut-off 26.2 26.2
Noise cut-off 26.1 26.1
Model length: 281
Family (HMM) version: 21
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Septin domain has been found. There are 67 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...

AlphaFold Structure Predictions

The list of proteins below match this family and have AlphaFold predicted structures. Click on the protein accession to view the predicted structure.

Protein Predicted structure External Information
A0A096MJN4 View 3D Structure Click here
A0A0G2KP10 View 3D Structure Click here
A0A0G2KQA6 View 3D Structure Click here
A0A0R4IEM0 View 3D Structure Click here
A0A0R4IPQ7 View 3D Structure Click here
A0A0U1RRT8 View 3D Structure Click here
A0A1D8PCY5 View 3D Structure Click here
A0A1D8PD83 View 3D Structure Click here
A0A1D8PGH0 View 3D Structure Click here
A0A1D8PNG4 View 3D Structure Click here
A0A2R8Q8Y9 View 3D Structure Click here
A0A2R8RRV0 View 3D Structure Click here
A0A2R8VJU7 View 3D Structure Click here
A0JMF4 View 3D Structure Click here
A2BGU8 View 3D Structure Click here
A4FUM1 View 3D Structure Click here
B0BNF1 View 3D Structure Click here
B0V1L0 View 3D Structure Click here
B3GNI6 View 3D Structure Click here
D3ZHG7 View 3D Structure Click here
E7FAB6 View 3D Structure Click here
E7FGH0 View 3D Structure Click here
F1LN75 View 3D Structure Click here
F1QAK1 View 3D Structure Click here
F1QHM4 View 3D Structure Click here
F1QMC3 View 3D Structure Click here
F1QPB5 View 3D Structure Click here
F1QQN9 View 3D Structure Click here
F1REC2 View 3D Structure Click here
G1UB61 View 3D Structure Click here
O36023 View 3D Structure Click here
O43236 View 3D Structure Click here
O55131 View 3D Structure Click here
O60165 View 3D Structure Click here
P25342 View 3D Structure Click here
P28661 View 3D Structure Click here
P32457 View 3D Structure Click here
P32458 View 3D Structure Click here
P32468 View 3D Structure Click here
P39827 View 3D Structure Click here