Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
3  structures 197  species 0  interactions 2130  sequences 26  architectures

Family: Glyco_transf_29 (PF00777)

Summary: Glycosyltransferase family 29 (sialyltransferase)

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Sialyltransferase". More...

Sialyltransferase Edit Wikipedia article

Glycosyltransferase family 29 (sialyltransferase)
Identifiers
Symbol Glyco_transf_29
Pfam PF00777
InterPro IPR001675

Sialyltransferases are enzymes that transfer sialic acid to nascent oligosaccharide.[1]Each sialyltransferase is specific for a particular sugar substrate. Sialyltransferases add sialic acid to the terminal portions of the sialylated glycolipids (gangliosides) or to the N- or O-linked sugar chains of glycoproteins.

The biosynthesis of disaccharides, oligosaccharides and polysaccharides involves the action of hundreds of different glycosyltransferases. These enzymes catalyse the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. A classification of glycosyltransferases using nucleotide diphospho-sugar, nucleotide monophospho-sugar and sugar phosphates (EC 2.4.1.-) and related proteins into distinct sequence based families has been described.[2] This classification is available on the CAZy (CArbohydrate-Active EnZymes) web site.[3] The same three-dimensional fold is expected to occur within each of the families. Because 3-D structures are better conserved than sequences, several of the families defined on the basis of sequence similarities may have similar 3-D structures and therefore form 'clans'.

Sialyltransferases belong to glycosyltransferase family 29 (CAZY GT_29) which comprises enzymes with a number of known activities; sialyltransferase (EC 2.4.99), beta-galactosamide alpha-2,6-sialyltransferase (EC 2.4.99.1), alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase (EC 2.4.99.3), beta-galactoside alpha-2,3-sialyltransferase (EC 2.4.99.4), N-acetyllactosaminide alpha-2,3-sialyltransferase (EC 2.4.99.6), alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase (EC 2.4.99.8); lactosylceramide alpha-2,3-sialyltransferase (EC 2.4.99.9). These enzymes use a nucleotide monophosphosugar as the donor (CMP-NeuA) instead of a nucleotide diphosphosugar.

Sialyltransferase may be responsible for the synthesis of the sequence NEUAC-Alpha-2,3-GAL-Beta-1,3-GALNAC-, found on sugar chains O-linked to thr or ser and also as a terminal sequenec on certain gagnliosides. These enzymes catalyse sialyltransfer reactions during glycosylation, and are type II membrane proteins.

There are about twenty different sialyltransferases which can be distinguished on the basis of the acceptor structure on which they act and on the type of sugar linkage they form. For example, a group of sialyltransferases adds sialic acid with an alpha-2,3 linkage to galactose, while other sialyltransferases add sialic acid with an alpha-2,6 linkage to galactose or N-acetylgalactosamine. A peculiar type of sialyltransferases add sialic acid to other sialic acid units with an alpha-2,8 linkage, forming structures referred to as polysialic acid. As occurs for other glycosyltransferases, the expression of sialyltransferases undergoes profound modifications during cell differentiation and neoplastic transformation; in some cases such changes induce phenotypic alterations.[4]

Human proteins containing this domain[edit]

SIAT4C; SIAT9; ST3GAL1; ST3GAL2; ST3GAL3; ST3GAL4; ST3GAL5; ST3GAL6; ST3GalIII; ST6GAL1; ST6GAL2; ST6Gal; ST8SIA1; ST8SIA2; ST8SIA3; ST8SIA4; ST8SIA5; ST8SIA6; ST8Sia;

References[edit]

  1. ^ Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P.The human sialyltransferase family.Biochimie. 2001 Aug;83(8):727-37
  2. ^ Henrissat B, Davies GJ, Campbell JA, Bulone V (1997). "A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities". Biochem. J. 326: 929–939. PMC 1218753. PMID 9334165. 
  3. ^ Henrissat B, Coutinho PM (1999). Carbohydrate-Active Enzymes server. pp. –. 
  4. ^ Dall'Olio and Chiricolo, Glycoconjugate J. 18 841-850, 2001

External links[edit]

This article incorporates text from the public domain Pfam and InterPro IPR001675


This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Glycosyltransferase family 29 (sialyltransferase) Provide feedback

Members of this family belong to glycosyltransferase family 29 [1].

Literature references

  1. Campbell JA, Davies GJ, Bulone V, Henrissat B; , Biochem J 1997;326:929-939.: A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities PUBMED:9334165 EPMC:9334165


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001675

The biosynthesis of disaccharides, oligosaccharides and polysaccharides involves the action of hundreds of different glycosyltransferases. These enzymes catalyse the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. A classification of glycosyltransferases using nucleotide diphospho-sugar, nucleotide monophospho-sugar and sugar phosphates (EC) and related proteins into distinct sequence based families has been described [PUBMED:9334165]. This classification is available on the CAZy (CArbohydrate-Active EnZymes) web site. The same three-dimensional fold is expected to occur within each of the families. Because 3-D structures are better conserved than sequences, several of the families defined on the basis of sequence similarities may have similar 3-D structures and therefore form 'clans'.

Glycosyltransferase family 29 (CAZY) comprises enzymes with a number of known activities; sialyltransferase (EC), beta-galactosamide alpha-2,6-sialyltransferase (EC), alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase (EC), beta-galactoside alpha-2,3-sialyltransferase (EC), N-acetyllactosaminide alpha-2,3-sialyltransferase (EC), alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase (EC); lactosylceramide alpha-2,3-sialyltransferase (EC). These enzymes use a nucleotide monophosphosugar as the donor (CMP-NeuA) instead of a nucleotide diphosphosugar.

Sialyltransferase may be responsible for the synthesis of the sequence NEUAC-Alpha-2,3-GAL-Beta-1,3-GALNAC-, found on sugar chains O-linked to thr or ser and also as a terminal sequenec on certain gagnliosides. These enzymes catalyse sialyltransfer reactions during glycosylation, and are type II membrane proteins.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(105)
Full
(2130)
Representative proteomes NCBI
(1851)
Meta
(142)
RP15
(297)
RP35
(410)
RP55
(626)
RP75
(993)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(105)
Full
(2130)
Representative proteomes NCBI
(1851)
Meta
(142)
RP15
(297)
RP35
(410)
RP55
(626)
RP75
(993)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(105)
Full
(2130)
Representative proteomes NCBI
(1851)
Meta
(142)
RP15
(297)
RP35
(410)
RP55
(626)
RP75
(993)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_1020 (release 2.1)
Previous IDs: Sialyltransf;
Type: Family
Author: Bateman A
Number in seed: 105
Number in full: 2130
Average length of the domain: 224.50 aa
Average identity of full alignment: 21 %
Average coverage of the sequence by the domain: 69.43 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.9 20.9
Trusted cut-off 21.1 21.0
Noise cut-off 20.5 20.7
Model length: 266
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Glyco_transf_29 domain has been found. There are 3 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...