Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
14  structures 3230  species 1  interaction 6971  sequences 703  architectures

Family: LTD (PF00932)

Summary: Lamin Tail Domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Intermediate filament". More...

Intermediate filament Edit Wikipedia article

Structure of intermediate filament
Intermediate filament tail domain
PDB 1ifr EBI.jpg
structure of lamin a/c globular domain
Identifiers
Symbol IF_tail
Pfam PF00932
InterPro IPR001322
PROSITE PDOC00198
SCOP 1ivt
SUPERFAMILY 1ivt
Intermediate filament protein
PDB 1gk4 EBI.jpg
human vimentin coil 2b fragment (cys2)
Identifiers
Symbol Filament
Pfam PF00038
InterPro IPR016044
PROSITE PDOC00198
SCOP 1gk7
SUPERFAMILY 1gk7
Intermediate filament head (DNA binding) region
Identifiers
Symbol Filament_head
Pfam PF04732
InterPro IPR006821
SCOP 1gk7
SUPERFAMILY 1gk7

Intermediate filaments (IFs) are cytoskeletal components found in the cells of vertebrate animal species,[1][2] and perhaps also in other animals, fungi, plants, and unicellular organisms.[3] They are composed of a family of related proteins sharing common structural and sequence features. Initially designated 'intermediate' because their average diameter (10 nm) is between those of narrower microfilaments (actin) and wider myosin filaments found in muscle cells, the diameter of intermediate filaments is now commonly compared to actin microfilaments (7 nm) and microtubules (25 nm).[1][4] Most types of intermediate filaments are cytoplasmic, but one type, the lamins, are nuclear. Unlike microtubules, IFs distribution in cells show no good correlation with the distribution of either mitochondria or endoplasmic reticulum.[5]

Structure

The structure of proteins that form IF was first predicted by computerized analysis of the amino acid sequence of a human epidermal keratin derived from cloned cDNAs.[6] Analysis of a second keratin sequence revealed that the two types of keratins share only about 30% amino acid sequence homology but share similar patterns of secondary structure domains.[7] As suggested by the first model, all IF proteins appear to have a central alpha-helical rod domain that is composed of four alpha-helical segments (named as 1A, 1B, 2A and 2B) separated by three linker regions.[7][8]

The N and C-termini of IF proteins are non-alpha-helical regions and show wide variation in their lengths and sequences across IF families. The basic building-block for IFs is a parallel and in-register dimer. The dimer is formed through the interaction of the rod domain to form a coiled coil.[9] Cytoplasmic IF assemble into non-polar unit-length filaments (ULF). Identical ULF associate laterally into staggered, antiparallel, soluble tetramers, which associate head-to-tail into protofilaments that pair up laterally into protofibrils, four of which wind together into an intermediate filament.[10]

Part of the assembly process includes a compaction step, in which ULF tighten and assume a smaller diameter. The reasons for this compaction are not well understood, and IF are routinely observed to have diameters ranging between 6 and 12 nm.

The N-terminal "head domain" binds DNA.[11] Vimentin heads are able to alter nuclear architecture and chromatin distribution, and the liberation of heads by HIV-1 protease may play an important role in HIV-1 associated cytopathogenesis and carcinogenesis.[12] Phosphorylation of the head region can affect filament stability.[13] The head has been shown to interact with the rod domain of the same protein.[14]

C-terminal "tail domain" shows extreme length variation between different IF proteins.[15]

The anti-parallel orientation of tetramers means that, unlike microtubules and microfilaments, which have a plus end and a minus end, IFs lack polarity and cannot serve as basis for cell motility and intracellular transport.

Also, unlike actin or tubulin, intermediate filaments do not contain a binding site for a nucleoside triphosphate.

Cytoplasmic IFs do not undergo treadmilling like microtubules and actin fibers, but are dynamic. For a review see: [1].

Biomechanical properties

IFs are rather deformable proteins that can be stretched several times their initial length.[16] The key to facilitate this large deformation is due to their hierarchical structure, which facilitates a cascaded activation of deformation mechanisms at different levels of strain.[9] Initially the coupled alpha-helices of unit-length filaments uncoil as they're strained, then as the strain increases they transition into beta-sheets, and finally at increased strain the hydrogen bonds between beta-sheets slip and the ULF monomers slide along each other.[9]

Types

There are about 70 different genes coding for various intermediate filament proteins. However, different kinds of IFs share basic characteristics: In general, they are all polymers that measure between 9-11 nm in diameter when fully assembled.

IF are subcategorized into six types based on similarities in amino acid sequence and protein structure.

Types I and II – acidic and basic keratins

keratin intermediate filaments (stained red)

These proteins are the most diverse among IFs and constitute type I (acidic) and type II (basic) IF proteins. The many isoforms are divided in two groups:

Regardless of the group, keratins are either acidic or basic. Acidic and basic keratins bind each other to form acidic-basic heterodimers and these heterodimers then associate to make a keratin filament.

Type III

There are four proteins classed as type III IF proteins, which may form homo- or heteropolymeric proteins.

Type IV

Type V - nuclear lamins

Lamins are fibrous proteins having structural function in the cell nucleus.

In metazoan cells, there are A and B type lamins, which differ in their length and pI. Human cells have three differentially regulated genes. B-type lamins are present in every cell. B type lamins, B1 and B2, are expressed from the LMNB1 and LMNB2 genes on 5q23 and 19q13, respectively. A-type lamins are only expressed following gastrulation. Lamin A and C are the most common A-type lamins and are splice variants of the LMNA gene found at 1q21.

These proteins localize to two regions of the nuclear compartment, the nuclear lamina—a proteinaceous structure layer subjacent to the inner surface of the nuclear envelope and throughout the nucleoplasm in the nucleoplasmic "veil".

Comparison of the lamins to vertebrate cytoskeletal IFs shows that lamins have an extra 42 residues (six heptads) within coil 1b. The c-terminal tail domain contains a nuclear localization signal (NLS), an Ig-fold-like domain, and in most cases a carboxy-terminal CaaX box that is isoprenylated and carboxymethylated (lamin C does not have a CAAX box). Lamin A is further processed to remove the last 15 amino acids and its farnesylated cysteine.

During mitosis, lamins are phosphorylated by MPF, which drives the disassembly of the lamina and the nuclear envelope.

Type VI

Unclassified

Beaded Filaments-- Filensin, Phakinin

Cell adhesion

At the plasma membrane, some keratins interact with desmosomes (cell-cell adhesion) and hemidesmosomes (cell-matrix adhesion) via adapter proteins.

Associated proteins

Filaggrin binds to keratin fibers in epidermal cells. Plectin links vimentin to other vimentin fibers, as well as to microfilaments, microtubules, and myosin II. Kinesin is being researched and is suggested to connect vimentin to tubulin via motor proteins.

Keratin filaments in epithelial cells link to desmosomes (desmosomes connect the cytoskeleton together) through plakoglobin, desmoplakin, desmogleins, and desmocollins; desmin filaments are connected in a similar way in heart muscle cells.

Diseases arising from mutations in IF genes

References

  1. ^ a b Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (July 2007). "Intermediate filaments: from cell architecture to nanomechanics". Nat. Rev. Mol. Cell Biol. 8 (7): 562–73. doi:10.1038/nrm2197. PMID 17551517. 
  2. ^ Karabinos, Anton, Dieter Riemer, Andreas Erber, and Klaus Weber. "Homologues of Vertebrate Type I, II and III Intermediate Filament (IF) Proteins in an Invertebrate: The IF Multigene Family of the Cephalochordate Branchiostoma." FEBS Letters 437.1-2 (1998): 15-18. Web.
  3. ^ Traub, P. (2012), Intermediate Filaments: A Review, Springer Berlin Heidelberg, p. 33, ISBN 9783642702303 
  4. ^ Ishikawa H, Bischoff R, Holtzer H (September 1968). "Mitosis and intermediate-sized filaments in developing skeletal muscle". J. Cell Biol. 38 (3): 538–55. doi:10.1083/jcb.38.3.538. PMC 2108373Freely accessible. PMID 5664223. 
  5. ^ Soltys, BJ and Gupta RS: Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study. Biochem. Cell. Biol. (1992) 70: 1174-1186
  6. ^ Hanukoglu I, Fuchs E (November 1982). "The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins". Cell. 31 (1): 243–52. doi:10.1016/0092-8674(82)90424-X. PMID 6186381. 
  7. ^ a b Hanukoglu I, Fuchs E (July 1983). "The cDNA sequence of a Type II cytoskeletal keratin reveals constant and variable structural domains among keratins". Cell. 33 (3): 915–24. doi:10.1016/0092-8674(83)90034-X. PMID 6191871. 
  8. ^ Lee CH, Kim MS, Chung BM, Leahy DJ, Coulombe PA (July 2012). "Structural basis for heteromeric assembly and perinuclear organization of keratin filaments". Nat. Struct. Mol. Biol. 19 (7): 707–15. doi:10.1038/nsmb.2330. PMC 3864793Freely accessible. PMID 22705788. 
  9. ^ a b c Qin Z, Kreplak L, Buehler MJ (2009). "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments". PLoS ONE. 4 (10): e7294. doi:10.1371/journal.pone.0007294. PMC 2752800Freely accessible. PMID 19806221. 
  10. ^ Lodish H; Berk A; Zipursky SL; et al. (2000). Molecular Cell Biology. New York: W. H. Freeman. p. Section 19.6, Intermediate Filaments. ISBN 0-07-243940-8. 
  11. ^ Wang Q, Tolstonog GV, Shoeman R, Traub P (August 2001). "Sites of nucleic acid binding in type I-IV intermediate filament subunit proteins". Biochemistry. 40 (34): 10342–9. doi:10.1021/bi0108305. PMID 11513613. 
  12. ^ Shoeman RL, Huttermann C, Hartig R, Traub P (January 2001). "Amino-terminal polypeptides of vimentin are responsible for the changes in nuclear architecture associated with human immunodeficiency virus type 1 protease activity in tissue culture cells". Mol. Biol. Cell. 12 (1): 143–54. doi:10.1091/mbc.12.1.143. PMC 30574Freely accessible. PMID 11160829. 
  13. ^ Takemura M, Gomi H, Colucci-Guyon E, Itohara S (August 2002). "Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice". J. Neurosci. 22 (16): 6972–9. PMID 12177195. 
  14. ^ Parry DA, Marekov LN, Steinert PM, Smith TA (2002). "A role for the 1A and L1 rod domain segments in head domain organization and function of intermediate filaments: structural analysis of trichocyte keratin". J. Struct. Biol. 137 (1-2): 97–108. doi:10.1006/jsbi.2002.4437. PMID 12064937. 
  15. ^ Quinlan R, Hutchison C, Lane B (1995). "Intermediate filament proteins". Protein Profile. 2 (8): 795–952. PMID 8771189. 
  16. ^ Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (July 2007). "Intermediate filaments: from cell architecture to nanomechanics". Nat. Rev. Mol. Cell Biol. 8 (7): 562–73. doi:10.1038/nrm2197. PMID 17551517. Qin Z, Kreplak L, Buehler MJ (2009). "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments". PLoS ONE. 4 (10): e7294. doi:10.1371/journal.pone.0007294. PMC 2752800Freely accessible. PMID 19806221. Kreplak L, Fudge D (January 2007). "Biomechanical properties of intermediate filaments: from tissues to single filaments and back". BioEssays. 29 (1): 26–35. doi:10.1002/bies.20514. PMID 17187357. Qin Z, Buehler MJ, Kreplak L (January 2010). "A multi-scale approach to understand the mechanobiology of intermediate filaments". J Biomech. 43 (1): 15–22. doi:10.1016/j.jbiomech.2009.09.004. PMID 19811783. Qin Z, Kreplak L, Buehler MJ (October 2009). "Nanomechanical properties of vimentin intermediate filament dimers". Nanotechnology. 20 (42): 425101. doi:10.1088/0957-4484/20/42/425101. PMID 19779230. 
  17. ^ Steinert PM, Chou YH, Prahlad V, Parry DA, Marekov LN, Wu KC, Jang SI, Goldman RD (April 1999). "A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. Limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV alpha-internexin". J. Biol. Chem. 274 (14): 9881–90. doi:10.1074/jbc.274.14.9881. PMID 10092680. 
  18. ^ Klauke B, Kossmann S, Gaertner A, Brand K, Stork I, Brodehl A, Dieding M, Walhorn V, Anselmetti D, Gerdes D, Bohms B, Schulz U, Zu Knyphausen E, Vorgerd M, Gummert J, Milting H (December 2010). "De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy". Hum. Mol. Genet. 19 (23): 4595–607. doi:10.1093/hmg/ddq387. PMID 20829228. 
  19. ^ Brodehl A, Hedde PN, Dieding M, Fatima A, Walhorn V, Gayda S, Šarić T, Klauke B, Gummert J, Anselmetti D, Heilemann M, Nienhaus GU, Milting H (May 2012). "Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants". J. Biol. Chem. 287 (19): 16047–57. doi:10.1074/jbc.M111.313841. PMC 3346104Freely accessible. PMID 22403400. 

Further reading

External links

This article incorporates text from the public domain Pfam and InterPro IPR001322

This article incorporates text from the public domain Pfam and InterPro IPR006821

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Lamin Tail Domain Provide feedback

The lamin-tail domain (LTD), which has an immunoglobulin (Ig) fold, is found in Nuclear Lamins, Chlo1887 from Chloroflexus, and several bacterial proteins where it occurs with membrane associated hydrolases of the metallo-beta-lactamase,synaptojanin, and calcineurin-like phosphoesterase superfamilies [1].

Literature references

  1. Mans BJ, Anantharaman V, Aravind L, Koonin EV;, Cell Cycle. 2004;3:1612-1637.: Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. PUBMED:15611647 EPMC:15611647


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001322

Intermediate filaments (IFs) constitute a major structural element of metazoan cells. They build two distinct systems: one inside the nucleus attached to the inner membrane, and one that is cytoplasmic, which connects intercellular junctional complexes situated at the plasma membrane with the outer nuclear membrane. In both cases, their major function is assumed to be that of a mechanical stress absorber and an integrating device for the entire cytoskeleton. In the nucleus, the IF system is assembled from lamins, which together with an ever increasing number of associated transmembrane and chromatin-binding proteins constitute the nuclear lamina. Despite the large diversity among IF proteins, they all share a similar structural building plan, with a long central alpha-helical 'rod' domain that is flanked by non-alpha-helical N- and C-terminal end domains called 'head' and 'tail', respectively [PUBMED:17551517,PUBMED:1794458].

Lamins exhibit a highly conserved globular C-terminal lamin-tail domain (LTD) which has the immunoglobulin (Ig) fold. Invertebrate cytoplasmic IFs share sequence similarity with nuclear lamins and also contain a C-terminal tail domain with homology to the LTD [PUBMED:15611647].

Domains homologous to the LTD have been detected in several uncharacterized proteins from phylogenetically diverse bacteria and two archaea, Methanosarcina and Halobacterium. In several bacterial proteins, the LTD cooccurs with membrane-associated hydrolases of the metallo-beta-lactamase, synaptojanin, and calcineurin-like phosphoesterase superfamilies. In other secreted or periplasmic bacterial proteins, the LTDs are associated with oligosaccharide-binding domains or are present as multiple tandem repeats in a single protein. These associations suggest a potential role for the prokaryotic LTDs in tethering proteins to the membrane or membrane-associated structures. In contrast to the bacterial homologs, all animal LTDs are closely related and are contained in proteins with a stereotypic architecture. The precursor of the animal LTD might have been acquired via horizontal gene transfer from bacteria relatively late in the evolution of the eukaryotic crown group. Subsequent to this acquisition, a coiled-coil domain, derived from preexisting intermediate filament coil-coils, might have been fused to the N-termini of the LTD [PUBMED:15611647].

The LTD domain could be involved both in protein and DNA binding [PUBMED:12057196]. The LTD domain adopts an Ig-like fold of type s. It consists of a 2-layered sandwich of 9 anti-parallel beta-strands arranged in two beta- sheets with a Greek key topology. One of the sheets has five beta-strands while the other has four. Seven of the 9 strands are present in the classical Ig fold topology [PUBMED:12057196, PUBMED:22265972].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan E-set (CL0159), which has the following description:

This clan includes a diverse range of domains that have an Ig-like fold and appear to be distantly related to each other. The clan includes: PKD domains, cadherins and several families of bacterial Ig-like domains as well as viral tail fibre proteins. it also includes several Fibronectin type III domain-containing families.

The clan contains the following 218 members:

A2M A2M_BRD A2M_recep Adeno_GP19K AlcCBM31 Alpha-amylase_N Alpha_adaptinC2 Alpha_E2_glycop Arch_flagellin Arylsulfotran_N ASF1_hist_chap ATG19_autophagy BACON Big_1 Big_10 Big_11 Big_2 Big_3 Big_3_2 Big_3_3 Big_3_5 Big_4 Big_5 Big_6 Big_7 Big_8 Big_9 Bile_Hydr_Trans BiPBP_C bMG1 bMG10 bMG3 bMG5 bMG6 BslA BsuPI Cadherin Cadherin-like Cadherin_2 Cadherin_3 Cadherin_4 Cadherin_5 Cadherin_pro CagX Calx-beta Candida_ALS_N CARDB CBM39 CBM_X2 CD45 CelD_N Ceramidse_alk_C CHB_HEX_C CHB_HEX_C_1 ChitinaseA_N ChiW_Ig_like CHU_C Coatamer_beta_C COP-gamma_platf CopC Cyc-maltodext_N Cytomega_US3 DsbC DUF11 DUF1410 DUF1425 DUF1929 DUF2271 DUF3244 DUF3327 DUF3416 DUF3458 DUF3501 DUF3823_C DUF3859 DUF3872 DUF4165 DUF4179 DUF4426 DUF4448 DUF4469 DUF4625 DUF4879 DUF4981 DUF4982 DUF5001 DUF5008 DUF5011 DUF5065 DUF5115 DUF525 DUF5643 DUF916 EB_dh ECD EpoR_lig-bind ERAP1_C EstA_Ig_like Filamin FixG_C Flavi_glycop_C FlgD_ig fn3 Fn3-like fn3_2 fn3_4 fn3_5 fn3_6 FN3_7 Fn3_assoc fn3_PAP GBS_Bsp-like Glucodextran_B Glyco_hydro2_C5 Glyco_hydro_2 Glyco_hydro_61 Gmad2 GMP_PDE_delta GPI-anchored Hanta_G1 He_PIG He_PIG_assoc HECW_N HemeBinding_Shp Hemocyanin_C Herpes_BLLF1 HYR IFNGR1 Ig_GlcNase Ig_mannosidase IL12p40_C Il13Ra_Ig IL17R_fnIII_D1 IL17R_fnIII_D2 IL2RB_N1 IL3Ra_N IL4Ra_N IL6Ra-bind Inhibitor_I42 Inhibitor_I71 Integrin_alpha2 Interfer-bind Invasin_D3 IRK_C IrmA Iron_transport LEA_2 Lep_receptor_Ig LIFR_N Lipase_bact_N LPMO_10 LRR_adjacent LTD Mannosidase_ig MG1 MG2 MG3 MG4 Mo-co_dimer N_BRCA1_IG Na_K-ATPase NEAT Neocarzinostat Neurexophilin NPCBM_assoc PapD_C PBP-Tp47_c Peptidase_C25_C Phlebovirus_G2 PhoD_N PKD PKD_2 PKD_3 Pollen_allerg_1 Pox_vIL-18BP Pur_ac_phosph_N Qn_am_d_aII Qn_am_d_aIII RabGGT_insert Reeler REJ RET_CLD1 RET_CLD3 RET_CLD4 RGI_lyase RHD_dimer Rho_GDI Rib SCAB-Ig SKICH SLAM SoxZ SprB SusE SVA SWM_repeat T2SS-T3SS_pil_N Tafi-CsgC TarS_C1 TcA_RBD TcfC TIG TIG_2 TIG_plexin Tissue_fac Top6b_C Transglut_C Transglut_N TRAP_beta Tuberculin UL16 Velvet WIF Wzt_C Y_Y_Y YBD ZirS_C Zona_pellucida

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(169)
Full
(6971)
Representative proteomes UniProt
(20298)
NCBI
(23015)
Meta
(956)
RP15
(2712)
RP35
(5397)
RP55
(7586)
RP75
(9498)
Jalview View  View  View  View  View  View  View  View  View 
HTML View                 
PP/heatmap 1                

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(169)
Full
(6971)
Representative proteomes UniProt
(20298)
NCBI
(23015)
Meta
(956)
RP15
(2712)
RP35
(5397)
RP55
(7586)
RP75
(9498)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(169)
Full
(6971)
Representative proteomes UniProt
(20298)
NCBI
(23015)
Meta
(956)
RP15
(2712)
RP35
(5397)
RP55
(7586)
RP75
(9498)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Anantharaman V
Previous IDs: IF_C_term; IF_tail;
Type: Domain
Sequence Ontology: SO:0000417
Author: Finn RD , Bateman A , Anantharaman V
Number in seed: 169
Number in full: 6971
Average length of the domain: 117.10 aa
Average identity of full alignment: 18 %
Average coverage of the sequence by the domain: 19.56 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 34.3 34.3
Trusted cut-off 34.3 34.3
Noise cut-off 34.2 34.2
Model length: 112
Family (HMM) version: 19
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

LTD

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the LTD domain has been found. There are 14 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...