Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
120  structures 3019  species 1  interaction 6221  sequences 68  architectures

Family: Asparaginase_2 (PF01112)

Summary: Asparaginase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Asparaginase". More...

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Asparaginase Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000246

Threonine peptidases are characterised by a threonine nucleophile at the N terminus of the mature enzyme. The threonine peptidases belong to clan PB or are unassigned, clan T-. The type example for this clan is the archaean proteasome beta component of Thermoplasma acidophilum.

This group of sequences have a signature that places them in MEROPS peptidase family T2 (clan PB(T)). The glycosylasparaginases (EC) are threonine peptidases. Also in this family is L-asparaginase (EC), which catalyses the following reaction: L-asparagine + H2O = L-aspartate + NH3

Glycosylasparaginase catalyses: N4-(beta-N-acetyl-D-glucosaminyl)-L-asparagine + H(2)O = N-acetyl-beta-glucosaminylamine + L-aspartate cleaving the GlcNAc-Asn bond that links oligosaccharides to asparagine in N-linked glycoproteins. The enzyme is composed of two non-identical alpha/beta subunits joined by strong non-covalent forces and has one glycosylation site located in the alpha subunit [PUBMED:8877373] and plays a major role in the degradation of glycoproteins.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan NTN (CL0052), which has the following description:

In the N-terminal nucleophile aminohydrolases (Ntn hydrolases) the N-terminal residue provides two catalytic groups, nucleophile and proton donor. These enzymes use the side chain of the amino-terminal residue, incorporated in a beta-sheet, as the nucleophile in the catalytic attack at the carbonyl carbon. The nucleophile is cysteine in GAT, serine in penicillin acylase, and threonine in the proteasome. All the enzymes share an unusual fold in which the nucleophile and other catalytic groups occupy equivalent sites. This fold provides both the capacity for nucleophilic attack and the possibility of autocatalytic processing [1].

The clan contains the following 16 members:

AAT Asparaginase_2 CBAH DUF1933 DUF3700 G_glu_transpept GATase_2 GATase_4 GATase_6 GATase_7 IMP_cyclohyd Penicil_amidase Peptidase_C69 Phospholip_B Proteasome Proteasome_A_N

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(53)
Full
(6221)
Representative proteomes UniProt
(13296)
NCBI
(18008)
Meta
(834)
RP15
(1425)
RP35
(3639)
RP55
(5607)
RP75
(7455)
Jalview View  View  View  View  View  View  View  View  View 
HTML View                 
PP/heatmap 1                

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(53)
Full
(6221)
Representative proteomes UniProt
(13296)
NCBI
(18008)
Meta
(834)
RP15
(1425)
RP35
(3639)
RP55
(5607)
RP75
(7455)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(53)
Full
(6221)
Representative proteomes UniProt
(13296)
NCBI
(18008)
Meta
(834)
RP15
(1425)
RP35
(3639)
RP55
(5607)
RP75
(7455)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Sarah Teichmann
Previous IDs: none
Type: Domain
Sequence Ontology: SO:0000417
Author: Bateman A
Number in seed: 53
Number in full: 6221
Average length of the domain: 257.80 aa
Average identity of full alignment: 27 %
Average coverage of the sequence by the domain: 80.97 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 19.4 19.4
Trusted cut-off 19.4 19.4
Noise cut-off 19.3 19.3
Model length: 306
Family (HMM) version: 18
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

Asparaginase_2

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Asparaginase_2 domain has been found. There are 120 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...