Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
1  structure 267  species 0  interactions 861  sequences 5  architectures

Family: Hydrophobin (PF01185)

Summary: Fungal hydrophobin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Hydrophobin". More...

Hydrophobin Edit Wikipedia article

Symbol Hydrophobin
Pfam PF01185
InterPro IPR001338
SCOP 1r2m
Fungal hydrophobin
Structure of hydrophobin HFBI from Trichoderma reesei
Symbol Hydrophobin_2
Pfam PF06766
InterPro IPR010636
SCOP 1r2m
OPM protein 1r2m

Hydrophobins are a group of small (~100 amino acids) cysteine-rich proteins that are expressed only by filamentous fungi. They are known for their ability to form a hydrophobic (water-repellent) coating on the surface of an object.[1] They were first discovered and separated in Schizophyllum commune in 1991.[2] Based on differences in hydropathy patterns and biophysical properties, they can be divided into two categories: class I and class II. Hydrophobins can self-assemble into a monolayer on hydrophobic:hydrophilic interfaces such as a water:air interface. Class I monolayer contains the same core structure as amyloid fibrils, and is positive to Congo red and thioflavin T. The monolayer formed by class I hydrophobins has a highly ordered structure, and can only be dissociated by concentrated trifluoroacetate or formic acid. Monolayer assembly involves large structural rearrangements with respect to the monomer.[3]

Fungi make complex aerial structures and spores even in aqueous environments.

Hydrophobins have been identified in ascomycetes and basidiomycetes; whether they exist in other groups is not known.[4] Hydrophobins are generally found on the outer surface of conidia and of the hyphal wall, and may be involved in mediating contact and communication between the fungus and its environment.[5] Some family members contain multiple copies of the domain.

This family of proteins includes the rodlet proteins of Neurospora crassa (gene eas) and Emericella nidulans (gene rodA), these proteins are the main component of the hydrophobic sheath covering the surface of many fungal spores.[6][7]

Genomic sequencing of two fungi from dry or salty environments (Wallemia sebi and W. ichthyophaga) revealed that these species contain predicted hydrophobins with unusually high proportion of acidic amino acids and therefore with potentially novel characteristics.[8] High proportion of acidic amino acids is thought to be an adaptation of proteins to high concentrations of salt.[9]


  1. ^ Sunde M, Kwan AH, Templeton MD, Beever RE, Mackay JP (October 2008). "Structural analysis of hydrophobins". Micron 39 (7): 773–84. doi:10.1016/j.micron.2007.08.003. PMID 17875392. 
  2. ^ Wessels J, De Vries O, Asgeirsdottir SA, Schuren F (1991). "Hydrophobin Genes Involved in Formation of Aerial Hyphae and Fruit Bodies in Schizophyllum.". Plant Cell 3 (8): 793–799. doi:10.1105/tpc.3.8.793. PMC 160046. PMID 12324614. 
  3. ^ Morris V. K., Linser R., Wilde K. L., Duff A. P., Sunde M., Kwan A. H. (2012). "Solid-State NMR Spectroscopy of Functional Amyloid from a Fungal Hydrophobin: A Well-Ordered β-Sheet Core Amidst Structural Heterogeneity". Angew. Chem., Int. Ed. 51: 12621. doi:10.1002/anie.201205625. 
  4. ^ Wösten (2001). "Hydrophobins: multipurpose proteins". Annual review of microbiology 55: 625–646. doi:10.1146/annurev.micro.55.1.625. PMID 11544369.  edit
  5. ^ Whiteford JR, Spanu PD (2001). "The hydrophobin HCf-1 of Cladosporium fulvum is required for efficient water-mediated dispersal of conidia". Fungal Genet. Biol. 32 (3): 159–168. doi:10.1006/fgbi.2001.1263. PMID 11343402. 
  6. ^ Stringer MA, Dean RA, Sewall TC, Timberlake WE (July 1991). "Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation". Genes Dev. 5 (7): 1161–71. doi:10.1101/gad.5.7.1161. PMID 2065971. 
  7. ^ Lauter FR, Russo VE, Yanofsky C (December 1992). "Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora". Genes Dev. 6 (12A): 2373–81. doi:10.1101/gad.6.12a.2373. PMID 1459459. 
  8. ^ Zajc, J.; Liu, Y.; Dai, W.; Yang, Z.; Hu, J.; Gostin Ar, C.; Gunde-Cimerman, N. (2013). "Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: Haloadaptations present and absent". BMC Genomics 14: 617. doi:10.1186/1471-2164-14-617. PMID 24034603.  edit
  9. ^ Madern, D.; Ebel, C.; Zaccai, G. (2000). "Halophilic adaptation of enzymes". Extremophiles : life under extreme conditions 4 (2): 91–98. doi:10.1007/s007920050142. PMID 10805563.  edit

Further reading

  • Scholtmeijer K (2000). Expression and engineering of hydrophobin genes (Ph.D. thesis). University of Groningen. 
  • Hakanpää J, Paananen A, Askolin S, Nakari-Setälä T, Parkkinen T, Penttilä M, Linder MB, Rouvinen J (January 2004). "Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile". J. Biol. Chem. 279 (1): 534–9. doi:10.1074/jbc.M309650200. PMID 14555650. 
  • Wösten HA, de Vocht ML (September 2000). "Hydrophobins, the fungal coat unravelled". Biochim. Biophys. Acta 1469 (2): 79–86. doi:10.1016/S0304-4157(00)00002-2. PMID 10998570. 
  • Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latgé JP (August 2009). "Surface hydrophobin prevents immune recognition of airborne fungal spores". Nature 460 (7259): 1117–21. doi:10.1038/nature08264. PMID 19713928. 

This article incorporates text from the public domain Pfam and InterPro IPR001338

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Fungal hydrophobin Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001338

The surface of many fungal spores is covered by a hydrophobic sheath, the rodlet layer, whose main component is a protein known as the rodlet protein [PUBMED:2065971, PUBMED:1459459]. The rodlet proteins of Neurospora crassa (gene eas) and Emericella nidulans (gene rodA) are evolutionary related to proteins found in the cell wall of fruiting bodies of the mushroom Schizophyllum commune (Bracket fungus) [PUBMED:2401401]. Collectively, these low-molecular-weight, cysteine-rich (eight conserved cysteines), hydrophobic proteins, are known as hydrophobins.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Family
Author: Finn RD, Bateman A
Number in seed: 199
Number in full: 861
Average length of the domain: 80.60 aa
Average identity of full alignment: 32 %
Average coverage of the sequence by the domain: 57.61 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild --amino -o /dev/null HMM SEED
search method: hmmsearch -Z 80369284 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.4 21.4
Trusted cut-off 21.5 21.4
Noise cut-off 21.3 21.3
Model length: 80
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Hydrophobin domain has been found. There are 1 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...