Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
22  structures 323  species 2  interactions 783  sequences 9  architectures

Family: CK_II_beta (PF01214)

Summary: Casein kinase II regulatory subunit

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "CSNK2B". More...

CSNK2B Edit Wikipedia article

Casein kinase 2, beta polypeptide
Protein CSNK2B PDB 1jwh.png
PDB rendering based on 1jwh.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols CSNK2B ; CK2B; CK2N; CSK2B; G5A
External IDs OMIM115441 MGI88548 HomoloGene55572 ChEMBL: 2358 GeneCards: CSNK2B Gene
EC number 2.7.11.1
RNA expression pattern
PBB GE CSNK2B 201390 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 1460 13001
Ensembl ENSG00000204435 ENSMUSG00000024387
UniProt P67870 P67871
RefSeq (mRNA) NM_001282385 NM_009975
RefSeq (protein) NP_001269314 NP_034105
Location (UCSC) Chr 6:
31.63 – 31.64 Mb
Chr 17:
35.12 – 35.12 Mb
PubMed search [1] [2]
Casein kinase II regulatory subunit
PDB 1rqf EBI.jpg
structure of ck2 beta subunit crystallized in the presence of a p21waf1 peptide
Identifiers
Symbol CK_II_beta
Pfam PF01214
InterPro IPR000704
PROSITE PDOC00845
SCOP 1qf8
SUPERFAMILY 1qf8

Casein kinase II subunit beta is an protein that in humans is encoded by the CSNK2B gene.[1][2]

This gene encodes the beta subunit of casein kinase II, a ubiquitous protein kinase which regulates metabolic pathways, signal transduction, transcription, translation, and replication. The enzyme localizes to the endoplasmic reticulum and the Golgi apparatus.[3]

Casein kinase, a ubiquitous, well-conserved protein kinase involved in cell metabolism and differentiation, is characterised by its preference for Serine or Threonine in acidic stretches of amino acids. The enzyme is a tetramer of 2 alpha- and 2 beta-subunits.[4][5] However, some species (e.g., mammals) possess 2 related forms of the alpha-subunit (alpha and alpha'), while others (e.g., fungi) possess 2 related beta-subunits (beta and beta').[6] The alpha-subunit is the catalytic unit and contains regions characteristic of serine/threonine protein kinases. The beta-subunit is believed to be regulatory, possessing an N-terminal auto-phosphorylation site, an internal acidic domain, and a potential metal-binding motif.[6] The beta subunit is a highly conserved protein of about 25kDa that contains, in its central section, a cysteine-rich motif, CX(n)C, that could be involved in binding a metal such as zinc.[7] The mammalian beta-subunit gene promoter shares common features with those of other mammalian protein kinases and is closely related to the promoter of the regulatory subunit of cAMP-dependent protein kinase.[6]

Interactions

CSNK2B has been shown to interact with CD163,[8] CSNK2A2,[9][10][11][12] Casein kinase 2, alpha 1,[10][11][12][13][14] FGF1,[15] TRIB3,[16] CDC34,[17] Ribosomal protein L5,[9][13][18][19] BTF3,[20] BRCA1,[21] RNF7,[13] P70-S6 Kinase 1[22] and APC.[23]

References

  1. ^ Yang-Feng TL, Teitz T, Cheung MC, Kan YW, Canaani D (March 1991). "Assignment of the human casein kinase II beta-subunit gene to 6p12----p21". Genomics 8 (4): 741–2. doi:10.1016/0888-7543(90)90266-W. PMID 2276748. 
  2. ^ Mucher G, Becker J, Knapp M, Buttner R, Moser M, Rudnik-Schoneborn S, Somlo S, Germino G, Onuchic L, Avner E, Guay-Woodford L, Zerres K (April 1998). "Fine mapping of the autosomal recessive polycystic kidney disease locus (PKHD1) and the genes MUT, RDS, CSNK2 beta, and GSTA1 at 6p21.1-p12". Genomics 48 (1): 40–5. doi:10.1006/geno.1997.5145. PMID 9503014. 
  3. ^ "Entrez Gene: CSNK2B casein kinase 2, beta polypeptide". 
  4. ^ Jakobi R, Voss H, Pyerin W (July 1989). "Human phosvitin/casein kinase type II. Molecular cloning and sequencing of full-length cDNA encoding subunit beta". Eur. J. Biochem. 183 (1): 227–33. doi:10.1111/j.1432-1033.1989.tb14917.x. PMID 2666134. 
  5. ^ Voss H, Wirkner U, Jakobi R, Hewitt NA, Schwager C, Zimmermann J, Ansorge W, Pyerin W (July 1991). "Structure of the gene encoding human casein kinase II subunit beta". J. Biol. Chem. 266 (21): 13706–11. PMID 1856204. 
  6. ^ a b c Bidwai AP, Reed JC, Glover CV (May 1995). "Cloning and disruption of CKB1, the gene encoding the 38-kDa beta subunit of Saccharomyces cerevisiae casein kinase II (CKII). Deletion of CKII regulatory subunits elicits a salt-sensitive phenotype". J. Biol. Chem. 270 (18): 10395–404. doi:10.1074/jbc.270.18.10395. PMID 7737972. 
  7. ^ Reed JC, Bidwai AP, Glover CV (July 1994). "Cloning and disruption of CKB2, the gene encoding the 32-kDa regulatory beta'-subunit of Saccharomyces cerevisiae casein kinase II". J. Biol. Chem. 269 (27): 18192–200. PMID 8027080. 
  8. ^ Ritter, M; Buechler C; Kapinsky M; Schmitz G (April 2001). "Interaction of CD163 with the regulatory subunit of casein kinase II (CKII) and dependence of CD163 signaling on CKII and protein kinase C". Eur. J. Immunol. (Germany) 31 (4): 999–1009. doi:10.1002/1521-4141(200104)31:4<999::AID-IMMU999>3.0.CO;2-R. ISSN 0014-2980. PMID 11298324. 
  9. ^ a b Lehner, Ben; Semple Jennifer I; Brown Stephanie E; Counsell Damian; Campbell R Duncan; Sanderson Christopher M (January 2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region". Genomics (United States) 83 (1): 153–67. doi:10.1016/S0888-7543(03)00235-0. ISSN 0888-7543. PMID 14667819. 
  10. ^ a b Kim, M S; Lee Y T; Kim J M; Cha J Y; Bae Y S (February 1998). "Characterization of protein interaction among subunits of protein kinase CKII in vivo and in vitro". Mol. Cells (KOREA) 8 (1): 43–8. ISSN 1016-8478. PMID 9571630. 
  11. ^ a b Marin, O; Meggio F; Sarno S; Pinna L A (June 1997). "Physical dissection of the structural elements responsible for regulatory properties and intersubunit interactions of protein kinase CK2 beta-subunit". Biochemistry (UNITED STATES) 36 (23): 7192–8. doi:10.1021/bi962885q. ISSN 0006-2960. PMID 9188720. 
  12. ^ a b Bosc, D G; Graham K C; Saulnier R B; Zhang C; Prober D; Gietz R D; Litchfield D W (May 2000). "Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2". J. Biol. Chem. (UNITED STATES) 275 (19): 14295–306. doi:10.1074/jbc.275.19.14295. ISSN 0021-9258. PMID 10799509. 
  13. ^ a b c Ahn, B H; Kim T H; Bae Y S (October 2001). "Mapping of the interaction domain of the protein kinase CKII beta subunit with target proteins". Mol. Cells (Korea (South)) 12 (2): 158–63. ISSN 1016-8478. PMID 11710515. 
  14. ^ Kusk, M; Ahmed R; Thomsen B; Bendixen C; Issinger O G; Boldyreff B (January 1999). "Interactions of protein kinase CK2beta subunit within the holoenzyme and with other proteins". Mol. Cell. Biochem. (NETHERLANDS) 191 (1–2): 51–8. doi:10.1023/A:1006840613986. ISSN 0300-8177. PMID 10094392. 
  15. ^ Skjerpen, Camilla Skiple; Nilsen Trine; Wesche Jørgen; Olsnes Sjur (August 2002). "Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity". EMBO J. (England) 21 (15): 4058–69. doi:10.1093/emboj/cdf402. ISSN 0261-4189. PMC 126148. PMID 12145206. 
  16. ^ Zhou, Ying; Li Lu; Liu Qiongming; Xing Guichun; Kuai Xuezhang; Sun Jing; Yin Xiushan; Wang Jian; Zhang Lingqiang; He Fuchu (May 2008). "E3 ubiquitin ligase SIAH1 mediates ubiquitination and degradation of TRB3". Cell. Signal. (England) 20 (5): 942–8. doi:10.1016/j.cellsig.2008.01.010. ISSN 0898-6568. PMID 18276110. 
  17. ^ Block, K; Boyer T G; Yew P R (November 2001). "Phosphorylation of the human ubiquitin-conjugating enzyme, CDC34, by casein kinase 2". J. Biol. Chem. (United States) 276 (44): 41049–58. doi:10.1074/jbc.M106453200. ISSN 0021-9258. PMID 11546811. 
  18. ^ Boldyreff, B; Issinger O G (February 1997). "A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit". FEBS Lett. (NETHERLANDS) 403 (2): 197–9. doi:10.1016/S0014-5793(97)00010-0. ISSN 0014-5793. PMID 9042965. 
  19. ^ Kim, J M; Cha J Y; Marshak D R; Bae Y S (September 1996). "Interaction of the beta subunit of casein kinase II with the ribosomal protein L5". Biochem. Biophys. Res. Commun. (UNITED STATES) 226 (1): 180–6. doi:10.1006/bbrc.1996.1330. ISSN 0006-291X. PMID 8806611. 
  20. ^ Grein, S; Pyerin W (January 1999). "BTF3 is a potential new substrate of protein kinase CK2". Mol. Cell. Biochem. (NETHERLANDS) 191 (1–2): 121–8. doi:10.1023/A:1006806226764. ISSN 0300-8177. PMID 10094400. 
  21. ^ O'Brien, K A; Lemke S J; Cocke K S; Rao R N; Beckmann R P (July 1999). "Casein kinase 2 binds to and phosphorylates BRCA1". Biochem. Biophys. Res. Commun. (UNITED STATES) 260 (3): 658–64. doi:10.1006/bbrc.1999.0892. ISSN 0006-291X. PMID 10403822. 
  22. ^ Panasyuk, Ganna; Nemazanyy Ivan; Zhyvoloup Alexander; Bretner Maria; Litchfield David W; Filonenko Valeriy; Gout Ivan T (October 2006). "Nuclear export of S6K1 II is regulated by protein kinase CK2 phosphorylation at Ser-17". J. Biol. Chem. (United States) 281 (42): 31188–201. doi:10.1074/jbc.M602618200. ISSN 0021-9258. PMID 16895915. 
  23. ^ Homma, Miwako Kato; Li Dongxia; Krebs Edwin G; Yuasa Yasuhito; Homma Yoshimi (April 2002). "Association and regulation of casein kinase 2 activity by adenomatous polyposis coli protein". Proc. Natl. Acad. Sci. U.S.A. (United States) 99 (9): 5959–64. doi:10.1073/pnas.092143199. ISSN 0027-8424. PMC 122884. PMID 11972058. 

Further reading


This article incorporates text from the public domain Pfam and InterPro IPR000704

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Casein kinase II regulatory subunit Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000704

Casein kinase, a ubiquitous well-conserved protein kinase involved in cell metabolism and differentiation, is characterised by its preference for Ser or Thr in acidic stretches of amino acids. The enzyme is a tetramer of 2 alpha- and 2 beta-subunits [PUBMED:2666134, PUBMED:1856204]. However, some species (e.g., mammals) possess 2 related forms of the alpha-subunit (alpha and alpha'), while others (e.g., fungi) possess 2 related beta-subunits (beta and beta') [PUBMED:7737972].

The alpha-subunit is the catalytic unit and contains regions characteristic of serine/threonine protein kinases. The beta-subunit is believed to be regulatory, possessing an N-terminal auto-phosphorylation site, an internal acidic domain, and a potential metal-binding motif [PUBMED:7737972]. The beta subunit contains, in its central section, a cysteine-rich motif, CX(n)C, that could be involved in binding a metal such as zinc [PUBMED:8027080]. The mammalian beta-subunit gene promoter shares common features with those of other mammalian protein kinases and is closely related to the promoter of the regulatory subunit of cAMP-dependent protein kinase [PUBMED:7737972].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(66)
Full
(783)
Representative proteomes NCBI
(729)
Meta
(15)
RP15
(212)
RP35
(307)
RP55
(426)
RP75
(504)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(66)
Full
(783)
Representative proteomes NCBI
(729)
Meta
(15)
RP15
(212)
RP35
(307)
RP55
(426)
RP75
(504)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(66)
Full
(783)
Representative proteomes NCBI
(729)
Meta
(15)
RP15
(212)
RP35
(307)
RP55
(426)
RP75
(504)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Domain
Author: Finn RD, Bateman A
Number in seed: 66
Number in full: 783
Average length of the domain: 179.10 aa
Average identity of full alignment: 47 %
Average coverage of the sequence by the domain: 69.13 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.1 20.1
Trusted cut-off 22.2 21.1
Noise cut-off 20.0 17.3
Model length: 184
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

CK_II_beta Pkinase

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the CK_II_beta domain has been found. There are 22 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...