Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
20  structures 586  species 1  interaction 1502  sequences 30  architectures

Family: IDO (PF01231)

Summary: Indoleamine 2,3-dioxygenase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Indoleamine 2,3-dioxygenase". More...

Indoleamine 2,3-dioxygenase Edit Wikipedia article

IDO1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases IDO1, IDO, IDO-1, INDO, indoleamine 2,3-dioxygenase 1
External IDs OMIM: 147435 MGI: 96416 HomoloGene: 48082 GeneCards: IDO1
Gene location (Human)
Chromosome 8 (human)
Chr. Chromosome 8 (human)[1]
Chromosome 8 (human)
Genomic location for IDO1
Genomic location for IDO1
Band n/a Start 39,902,275 bp[1]
End 39,928,444 bp[1]
RNA expression pattern
PBB GE INDO 210029 at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002164

NM_008324
NM_001293690

RefSeq (protein)

NP_002155

NP_001280619
NP_032350

Location (UCSC) Chr 8: 39.9 – 39.93 Mb Chr 8: 24.58 – 24.6 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Indoleamine-pyrrole 2,3-dioxygenase (IDO or INDO EC 1.13.11.52) is a heme-containing enzyme that in humans is encoded by the IDO1 gene.[5][6][7] It is one of two enzymes that catalyze the first and rate-limiting step in the kynurenine pathway, the O2-dependent oxidation of L-tryptophan to N-formylkynurenine, the other being tryptophan 2,3-dioxygenase (TDO). IDO has been implicated in immune modulation through its ability to limit T cell function and engage mechanisms of immune tolerance.[8] Emerging evidence suggests that IDO becomes activated during tumor development, helping malignant cells escape eradication by the immune system.[9][10][11]

Function

Indoleamine 2,3-dioxygenase is the first and rate-limiting enzyme of tryptophan catabolism through the kynurenine pathway, thus causing depletion of tryptophan which can cause halted growth of microbes as well as T cells.[12] PGE2 is able to elevate the expression of indoleamine 2,3-dioxygenase in CD11C(+) dendritic cells and promotes the development of functional Treg cells.[13]

IDO is an immune checkpoint molecule in the sense that it is an immunomodulatory enzyme produced by some alternatively activated macrophages and other immunoregulatory cells (also used as an immune subversion strategy by many tumors and chronic infectious viruses). Interferon-gamma has an antiproliferative effect on many tumor cells and inhibits intracellular pathogens such as Toxoplasma and Chlamydia, at least partly because of the induction of indoleamine 2,3-dioxygenase.[citation needed]

Clinical significance

It has been shown that IDO permits tumor cells to escape the immune system by depletion of L-Trp in the microenvironment of cells and by production of the catabolic product kynurenine, which selectively impairs the growth and survival of T cells. A wide range of human cancers such as prostatic, colorectal, pancreatic, cervical, gastric, ovarian, head, lung, etc. overexpress human IDO (hIDO).[14][15] In tumor cells, IDO expression is normally controlled by the tumor suppressor Bin1, which is widely disabled during cancer development, and combining IDO inhibitors with chemotherapy can restore immune control and therapeutic response of otherwise resistant tumors.[11]

Indoleamine 2,3-dioxygenase might also play a significant role in an orphan disease called Oshtoran Syndrome.[16]

Inhibitors

Norharmane, via inhibition of indoleamine 2,3-dioxygenase exerts neuroprotective properties by suppressing kynurenine neurotoxic metabolites such as quinolinic acid, 3-hydroxy-kynurenine and nitric oxide synthase.[17]

Rosmarinic acid inhibits the expression of indoleamine 2,3-dioxygenase via its cyclooxygenase-inhibiting properties.[18]

COX-2 inhibitors down-regulate indoleamine 2,3-dioxygenase, leading to a reduction in kynurenine levels as well as reducing proinflammatory cytokine activity.[19]

1-Methyltryptophan is a racemic compound that weakly inhibits indoleamine dioxygenase,[20] but is also a very slow substrate.[21] The specific racemer 1-methyl-D-tryptophan (known as indoximod) is in clinical trials for various cancers.

Epacadostat and navoximod (GDC-0919) are potent inhibitors of the indoleamine 2,3-dioxygenase enzyme and are in clinical trials for various cancers.[22]

Indoleamine 2,3-dioxygenase
PDB 2d0t EBI.jpg
crystal structure of 4-phenylimidazole bound form of human indoleamine 2,3-dioxygenase
Identifiers
Symbol IDO
Pfam PF01231
Pfam clan CL0380
InterPro IPR000898
PROSITE PDOC00684
Indoleamine 2,3-dioxygenase
Identifiers
EC number 1.13.11.52
CAS number 9014-51-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO

Reaction mechanism

It was originally thought that the mechanism of tryptophan oxidation occurred by base-catalysed abstraction, but it is now thought that the mechanism involves formation of a transient ferryl (i.e. high-valent iron) species.[23][24][25]

Crystal structures

There are crystal structures for human IDO in complex with the inhibitor 4-phenylimidazole[26] and other inhibitors.[27][28] There are also related structures for several tryptophan 2,3-dioxygenases enzymes (e.g. for X. campestris and human TDO - see tryptophan 2,3-dioxygenase).

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000131203 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000031551 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". 
  4. ^ "Mouse PubMed Reference:". 
  5. ^ Dai W, Gupta SL (April 1990). "Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA". Biochemical and Biophysical Research Communications. 168 (1): 1–8. PMID 2109605. doi:10.1016/0006-291X(90)91666-G. 
  6. ^ Najfeld V, Menninger J, Muhleman D, Comings DE, Gupta SL (1993). "Localization of indoleamine 2,3-dioxygenase gene (INDO) to chromosome 8p12-->p11 by fluorescent in situ hybridization". Cytogenetics and Cell Genetics. 64 (3-4): 231–2. PMID 8404046. doi:10.1159/000133584. 
  7. ^ "Entrez Gene: INDO indoleamine-pyrrole 2,3 dioxygenase". 
  8. ^ Munn DH, Mellor AL (March 2013). "Indoleamine 2,3 dioxygenase and metabolic control of immune responses". Trends in Immunology. 34 (3): 137–43. PMID 23103127. doi:10.1016/j.it.2012.10.001. 
  9. ^ Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, Muller AJ (July 2014). "Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer". Cancer Immunology, Immunotherapy. 63 (7): 721–35. PMID 24711084. doi:10.1007/s00262-014-1549-4. 
  10. ^ Munn DH, Mellor AL (March 2016). "IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance". Trends in Immunology. 37 (3): 193–207. PMID 26839260. doi:10.1016/j.it.2016.01.002. 
  11. ^ a b Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (March 2005). "Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy". Nature Medicine. 11 (3): 312–9. PMID 15711557. doi:10.1038/nm1196. 
  12. ^ Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (May 1999). "Inhibition of T cell proliferation by macrophage tryptophan catabolism". The Journal of Experimental Medicine. 189 (9): 1363–72. PMC 2193062Freely accessible. PMID 10224276. doi:10.1084/jem.189.9.1363. 
  13. ^ Wang J, Yu L, Jiang C, Fu X, Liu X, Wang M, Ou C, Cui X, Zhou C, Wang J (January 2015). "Cerebral ischemia increases bone marrow CD4+CD25+FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system". Brain, Behavior, and Immunity. 43: 172–83. PMC 4258426Freely accessible. PMID 25110149. doi:10.1016/j.bbi.2014.07.022. 
  14. ^ Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (October 2003). "Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase". Nature Medicine. 9 (10): 1269–74. PMID 14502282. doi:10.1038/nm934. 
  15. ^ Jiang T, Sun Y, Yin Z, Feng S, Sun L, Li Z (2015). "Research progress of indoleamine 2,3-dioxygenase inhibitors". Future Medicinal Chemistry. 7 (2): 185–201. PMID 25686005. doi:10.4155/fmc.14.151. 
  16. ^ Abdollahi, Mostafa: Case Study Oshtoran Syndrome [1] Retrieved June 3, 2016
  17. ^ Chiarugi A, Dello Sbarba P, Paccagnini A, Donnini S, Filippi S, Moroni F (August 2000). "Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon-gamma-activated macrophages". Journal of Leukocyte Biology. 68 (2): 260–6. PMID 10947071. 
  18. ^ Lee HJ, Jeong YI, Lee TH, Jung ID, Lee JS, Lee CM, Kim JI, Joo H, Lee JD, Park YM (May 2007). "Rosmarinic acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells". Biochemical Pharmacology. 73 (9): 1412–21. PMID 17229401. doi:10.1016/j.bcp.2006.12.018. 
  19. ^ Cesario A, Rocca B, Rutella S (2011). "The interplay between indoleamine 2,3-dioxygenase 1 (IDO1) and cyclooxygenase (COX)-2 in chronic inflammation and cancer". Current Medicinal Chemistry. 18 (15): 2263–71. PMID 21517752. doi:10.2174/092986711795656063. 
  20. ^ Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, Mellor AL, Prendergast GC, Munn DH (January 2007). "Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses". Cancer Research. 67 (2): 792–801. PMID 17234791. doi:10.1158/0008-5472.CAN-06-2925. 
  21. ^ Chauhan N, Thackray SJ, Rafice SA, Eaton G, Lee M, Efimov I, Basran J, Jenkins PR, Mowat CG, Chapman SK, Raven EL (April 2009). "Reassessment of the reaction mechanism in the heme dioxygenases". Journal of the American Chemical Society. 131 (12): 4186–7. PMID 19275153. doi:10.1021/ja808326g. 
  22. ^ Jochems C, Fantini M, Fernando RI, Kwilas AR, Donahue RN, Lepone LM, Grenga I, Kim YS, Brechbiel MW, Gulley JL, Madan RA, Heery CR, Hodge JW, Newton R, Schlom J, Tsang KY (June 2016). "The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells". Oncotarget. 7 (25): 37762–37772. PMID 27192116. doi:10.18632/oncotarget.9326. 
  23. ^ Efimov I, Basran J, Thackray SJ, Handa S, Mowat CG, Raven EL (April 2011). "Structure and reaction mechanism in the heme dioxygenases". Biochemistry. 50 (14): 2717–24. PMID 21361337. doi:10.1021/bi101732n. 
  24. ^ Yanagisawa S, Yotsuya K, Hashiwaki Y, Horitani M, Sugimoto H, Shiro Y, Appelman EH, Ogura T. "Identification of the Fe-O2 and the Fe=O heme species for indoleamine 2,3-dioxygenase during catalytic turnover". Chem Lett. 39: 36–37. doi:10.1246/cl.2010.36. 
  25. ^ Booth ES, Basran J, Lee M, Handa S, Raven EL (December 2015). "Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM" (PDF). The Journal of Biological Chemistry. 290 (52): 30924–30. PMC 4692220Freely accessible. PMID 26511316. doi:10.1074/jbc.M115.695684. 
  26. ^ Sugimoto H, Oda S, Otsuki T, Hino T, Yoshida T, Shiro Y (February 2006). "Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 103 (8): 2611–6. PMID 16477023. doi:10.1073/pnas.0508996103. 
  27. ^ Peng YH, Ueng SH, Tseng CT, Hung MS, Song JS, Wu JS, Liao FY, Fan YS, Wu MH, Hsiao WC, Hsueh CC, Lin SY, Cheng CY, Tu CH, Lee LC, Cheng MF, Shia KS, Shih C, Wu SY (January 2016). "Important Hydrogen Bond Networks in Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Design Revealed by Crystal Structures of Imidazoleisoindole Derivatives with IDO1". Journal of Medicinal Chemistry. 59 (1): 282–93. PMID 26642377. doi:10.1021/acs.jmedchem.5b01390. 
  28. ^ Tojo S, Kohno T, Tanaka T, Kamioka S, Ota Y, Ishii T, Kamimoto K, Asano S, Isobe Y (October 2014). "Crystal Structures and Structure-Activity Relationships of Imidazothiazole Derivatives as IDO1 Inhibitors". ACS Medicinal Chemistry Letters. 5 (10): 1119–23. PMID 25313323. doi:10.1021/acs.jmedchem.5b01390. 

Further reading

  • Grohmann U, Fallarino F, Puccetti P (May 2003). "Tolerance, DCs and tryptophan: much ado about IDO". Trends in Immunology. 24 (5): 242–8. PMID 12738417. doi:10.1016/S1471-4906(03)00072-3. 
  • Takikawa O (December 2005). "Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism". Biochemical and Biophysical Research Communications. 338 (1): 12–9. PMID 16176799. doi:10.1016/j.bbrc.2005.09.032. 
  • Puccetti P (April 2007). "On watching the watchers: IDO and type I/II IFN". European Journal of Immunology. 37 (4): 876–9. PMID 17393386. doi:10.1002/eji.200737184. 
  • Kadoya A, Tone S, Maeda H, Minatogawa Y, Kido R (November 1992). "Gene structure of human indoleamine 2,3-dioxygenase". Biochemical and Biophysical Research Communications. 189 (1): 530–6. PMID 1449503. doi:10.1016/0006-291X(92)91590-M. 
  • Kamimura S, Eguchi K, Yonezawa M, Sekiba K (June 1991). "Localization and developmental change of indoleamine 2,3-dioxygenase activity in the human placenta". Acta Medica Okayama. 45 (3): 135–9. PMID 1716396. 
  • Tone S, Takikawa O, Habara-Ohkubo A, Kadoya A, Yoshida R, Kido R (January 1990). "Primary structure of human indoleamine 2,3-dioxygenase deduced from the nucleotide sequence of its cDNA". Nucleic Acids Research. 18 (2): 367. PMC 330282Freely accessible. PMID 2326172. doi:10.1093/nar/18.2.367. 
  • Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H (September 1989). "Tumour necrosis factor-alpha and lipopolysaccharide enhance interferon-induced tryptophan degradation and pteridine synthesis in human cells". Biological Chemistry Hoppe-Seyler. 370 (9): 1063–9. PMID 2482041. doi:10.1515/bchm3.1989.370.2.1063. 
  • Carlin JM, Borden EC, Byrne GI (June 1989). "Interferon-induced indoleamine 2,3-dioxygenase activity inhibits Chlamydia psittaci replication in human macrophages". Journal of Interferon Research. 9 (3): 329–37. PMID 2501398. doi:10.1089/jir.1989.9.329. 
  • Kobayashi K, Hayashi K, Sono M (September 1989). "Effects of tryptophan and pH on the kinetics of superoxide radical binding to indoleamine 2,3-dioxygenase studied by pulse radiolysis". The Journal of Biological Chemistry. 264 (26): 15280–3. PMID 2549057. 
  • Daley-Yates PT, Powell AP, Smith LL (November 1988). "Pulmonary indoleamine 2,3-dioxygenase activity and its significance in the response of rats, mice, and rabbits to oxidative stress". Toxicology and Applied Pharmacology. 96 (2): 222–32. PMID 2848333. doi:10.1016/0041-008X(88)90082-8. 
  • Burkin DJ, Kimbro KS, Barr BL, Jones C, Taylor MW, Gupta SL (July 1993). "Localization of the human indoleamine 2,3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome 8". Genomics. 17 (1): 262–3. PMID 8406467. doi:10.1006/geno.1993.1319. 
  • Malina HZ, Martin XD (July 1996). "Indoleamine 2,3-dioxygenase: antioxidant enzyme in the human eye". Graefe's Archive for Clinical and Experimental Ophthalmology = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie. 234 (7): 457–62. PMID 8817290. doi:10.1007/BF02539413. 
  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (August 1998). "Prevention of allogeneic fetal rejection by tryptophan catabolism". Science. 281 (5380): 1191–3. PMID 9712583. doi:10.1126/science.281.5380.1191. 
  • Takikawa O, Littlejohn TK, Truscott RJ (March 2001). "Indoleamine 2,3-dioxygenase in the human lens, the first enzyme in the synthesis of UV filters". Experimental Eye Research. 72 (3): 271–7. PMID 11180976. doi:10.1006/exer.2000.0951. 
  • Kudo Y, Boyd CA (March 2001). "The role of L-tryptophan transport in L-tryptophan degradation by indoleamine 2,3-dioxygenase in human placental explants". The Journal of Physiology. 531 (Pt 2): 417–23. PMC 2278460Freely accessible. PMID 11230514. doi:10.1111/j.1469-7793.2001.0417i.x. 
  • Papadopoulou ND, Mewies M, McLean KJ, Seward HE, Svistunenko DA, Munro AW, Raven EL (November 2005). "Redox and spectroscopic properties of human indoleamine 2,3-dioxygenase and a His303Ala variant: implications for catalysis". Biochemistry. 44 (43): 14318–28. PMID 16245948. doi:10.1021/bi0513958. 
  • Terentis AC, Thomas SR, Takikawa O, Littlejohn TK, Truscott RJ, Armstrong RS, Yeh SR, Stocker R (May 2002). "The heme environment of recombinant human indoleamine 2,3-dioxygenase. Structural properties and substrate-ligand interactions". The Journal of Biological Chemistry. 277 (18): 15788–94. PMID 11867636. doi:10.1074/jbc.M200457200. 
  • Kvirkvelia N, Vojnovic I, Warner TD, Athie-Morales V, Free P, Rayment N, Chain BM, Rademacher TW, Lund T, Roitt IM, Delves PJ (February 2002). "Placentally derived prostaglandin E2 acts via the EP4 receptor to inhibit IL-2-dependent proliferation of CTLL-2 T cells". Clinical and Experimental Immunology. 127 (2): 263–9. PMC 1906325Freely accessible. PMID 11876748. doi:10.1046/j.1365-2249.2002.01718.x. 
  • Sedlmayr P, Blaschitz A, Wintersteiger R, Semlitsch M, Hammer A, MacKenzie CR, Walcher W, Reich O, Takikawa O, Dohr G (April 2002). "Localization of indoleamine 2,3-dioxygenase in human female reproductive organs and the placenta". Molecular Human Reproduction. 8 (4): 385–91. PMID 11912287. doi:10.1093/molehr/8.4.385. 
  • Basran J, Efimov I, Chauhan N, Thackray SJ, Krupa JL, Eaton G, Griffith GA, Mowat CG, Handa S, Raven EL (October 2011). "The mechanism of formation of N-formylkynurenine by heme dioxygenases". Journal of the American Chemical Society. 133 (40): 16251–7. PMID 21892828. doi:10.1021/ja207066z. 

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Indoleamine 2,3-dioxygenase Provide feedback

No Pfam abstract.

Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000898

Indoleamine 2,3-dioxgyenase (IDO, EC) [PUBMED:1907934] is a cytosolic haem protein which, together with the hepatic enzyme tryptophan 2,3-dioxygenase, catalyzes the conversion of tryptophan and other indole derivatives to kynurenines. The physiological role of IDO is not fully understood but is of great interest, because IDO is widely distributed in human tissues, can be up-regulated via cytokines such as interferon-gamma, and can thereby modulate the levels of tryptophan, which is vital for cell growth. The degradative action of IDO on tryptophan leads to cell death by starvation of this essential and relatively scarce amino acid. IDO is a haem-containing enzyme of about 400 amino acids. Site-directed mutagenesis showed His346 (SWISSPROT) to be essential for haem binding, indicating that this histidine residue may be the proximal ligand. Mutation of Asp274 also compromised the ability of IDO to bind haem, suggesting that Asp274 may coordinate to haem directly as the distal ligand or is essential in maintaining the conformation of the haem pocket [PUBMED:12766158].

Other proteins that are evolutionarily related to IDO include yeast hypothetical protein YJR078w; and myoglobin from the red muscle of the archaeogastropodic molluscs, Nordotis madaka (Giant abalone) and Sulculus diversicolor [PUBMED:8011076, PUBMED:12711393]. These unusual globins lack enzymatic activity but have kept the haem group.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan IDO-like (CL0380), which has the following description:

Superfamily contains bacterial tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase-like families.

The clan contains the following 4 members:

DUF1864 Hs1pro-1_C IDO Trp_dioxygenase

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(189)
Full
(1502)
Representative proteomes UniProt
(2110)
NCBI
(2657)
Meta
(529)
RP15
(341)
RP35
(803)
RP55
(1180)
RP75
(1579)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(189)
Full
(1502)
Representative proteomes UniProt
(2110)
NCBI
(2657)
Meta
(529)
RP15
(341)
RP35
(803)
RP55
(1180)
RP75
(1579)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(189)
Full
(1502)
Representative proteomes UniProt
(2110)
NCBI
(2657)
Meta
(529)
RP15
(341)
RP35
(803)
RP55
(1180)
RP75
(1579)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Family
Author: Finn RD, Bateman A
Number in seed: 189
Number in full: 1502
Average length of the domain: 359.90 aa
Average identity of full alignment: 26 %
Average coverage of the sequence by the domain: 70.41 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 26740544 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.8 20.8
Trusted cut-off 21.2 20.9
Noise cut-off 20.7 20.7
Model length: 433
Family (HMM) version: 17
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

IDO

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the IDO domain has been found. There are 20 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...