Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
10  structures 639  species 1  interaction 1171  sequences 5  architectures

Family: AFOR_C (PF01314)

Summary: Aldehyde ferredoxin oxidoreductase, domains 2 & 3

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Aldehyde ferredoxin oxidoreductase". More...

Aldehyde ferredoxin oxidoreductase Edit Wikipedia article

Aldehyde ferredoxin oxidoreductase
Identifiers
EC number 1.2.7.5
CAS number 138066-90-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
AFOR_N
PDB 1aor EBI.jpg
structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase
Identifiers
Symbol AFOR_N
Pfam PF02730
InterPro IPR013983
SCOP 1aor
SUPERFAMILY 1aor
AFOR_C
Identifiers
Symbol AFOR_C
Pfam PF01314
InterPro IPR001203
SCOP 1aor
SUPERFAMILY 1aor

In enzymology, an aldehyde ferredoxin oxidoreductase (EC 1.2.7.5) is an enzyme that catalyzes the chemical reaction

an aldehyde + H2O + 2 oxidized ferredoxin \rightleftharpoons an acid + 2 H+ + 2 reduced ferredoxin

The 3 substrates of this enzyme are aldehyde, H2O, and oxidized ferredoxin, whereas its 3 products are acid, H+, and reduced ferredoxin.

This enzyme belongs to the family of oxidoreductases, specifically those acting on the aldehyde or oxo group of donor with an iron-sulfur protein as acceptor. The systematic name of this enzyme class is aldehyde:ferredoxin oxidoreductase. This enzyme is also called AOR.

Enzymes of the aldehyde ferredoxin oxidoreductase (AOR) family contain a tungsten cofactor and an 4Fe4S cluster.[1][2] This family includes AOR, formaldehyde ferredoxin oxidoreductase (FOR), glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), all isolated from hyperthermophilic archea;[1] carboxylic acid reductase found in clostridia;[3] and hydroxycarboxylate viologen oxidoreductase from Proteus vulgaris, the sole member of the AOR family containing molybdenum.[4] GAPOR may be involved in glycolysis,[5] but the functions of the other proteins are not yet clear. AOR has been proposed to be the primary enzyme responsible for oxidising the aldehydes that are produced by the 2-keto acid oxidoreductases.[6]

References

  1. ^ a b Kisker C, Schindelin H, Rees DC (1997). "Molybdenum-cofactor-containing enzymes: structure and mechanism". Annu. Rev. Biochem. 66: 233–67. doi:10.1146/annurev.biochem.66.1.233. PMID 9242907. 
  2. ^ Kletzin A, Adams MW (March 1996). "Tungsten in biological systems". FEMS Microbiol. Rev. 18 (1): 5–63. doi:10.1111/j.1574-6976.1996.tb00226.x. PMID 8672295. 
  3. ^ White H, Strobl G, Feicht R, Simon H (September 1989). "Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes". Eur. J. Biochem. 184 (1): 89–96. doi:10.1111/j.1432-1033.1989.tb14993.x. PMID 2550230. 
  4. ^ Trautwein T, Krauss F, Lottspeich F, Simon H (June 1994). "The (2R)-hydroxycarboxylate-viologen-oxidoreductase from Proteus vulgaris is a molybdenum-containing iron-sulphur protein". Eur. J. Biochem. 222 (3): 1025–32. doi:10.1111/j.1432-1033.1994.tb18954.x. PMID 8026480. 
  5. ^ Mukund S, Adams MW (April 1995). "Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus". J. Biol. Chem. 270 (15): 8389–92. doi:10.1074/jbc.270.15.8389. PMID 7721730. 
  6. ^ Ma K, Hutchins A, Sung SJ, Adams MW (September 1997). "Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase". Proc. Natl. Acad. Sci. U.S.A. 94 (18): 9608–13. doi:10.1073/pnas.94.18.9608. PMC 23233. PMID 9275170. 

Further reading

  • Mukund S, Adams MW (1991). "The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway". J. Biol. Chem. 266 (22): 14208–16. PMID 1907273. 
  • Johnson JL, Rajagopalan KV, Mukund S, Adams MW (1993). "Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea". J. Biol. Chem. 268 (7): 4848–52. PMID 8444863. 
  • Roy R, Menon AL, Adams MW (2001). "Aldehyde oxidoreductases from Pyrococcus furiosus". Methods Enzymol. 331: 132–44. doi:10.1016/S0076-6879(01)31052-2. PMID 11265456. 

This article incorporates text from the public domain Pfam and InterPro IPR013983


This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Aldehyde ferredoxin oxidoreductase, domains 2 & 3 Provide feedback

Aldehyde ferredoxin oxidoreductase (AOR) catalyses the reversible oxidation of aldehydes to their corresponding carboxylic acids with their accompanying reduction of the redox protein ferredoxin. This family is composed of two structural domains that bind the tungsten cofactor via DXXGL(C/D) motifs. In addition to maintaining specific binding interactions with the cofactor, another role for domains 2 and 3 may be to regulate substrate access to AOR [1].

Literature references

  1. Chan MK, Mukund S, Kletzin A, Adams MW, Rees DC; , Science 1995;267:1463-1469.: Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. PUBMED:7878465 EPMC:7878465


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001203

Enzymes of the aldehyde ferredoxin oxidoreductase (AOR) family [PUBMED:9242907] contain a tungsten cofactor and an 4Fe4S cluster and catalyse the interconversion of aldehydes to carboxylates [PUBMED:8672295]. This family includes AOR, formaldehyde ferredoxin oxidoreductase (FOR), glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), all isolated from hyperthermophilic archea [PUBMED:9242907]; carboxylic acid reductase found in clostridia [PUBMED:2550230]; and hydroxycarboxylate viologen oxidoreductase from Proteus vulgaris, the sole member of the AOR family containing molybdenum [PUBMED:8026480]. GAPOR may be involved in glycolysis [PUBMED:7721730], but the functions of the other proteins are not yet clear. AOR has been proposed to be the primary enzyme responsible for oxidising the aldehydes that are produced by the 2-keto acid oxidoreductases [PUBMED:9275170].

This entry represents the C-terminal region of these enzymes, containing the alpha-helical structural domains 2 and 3 [PUBMED:10024458, PUBMED:7878465].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(112)
Full
(1171)
Representative proteomes NCBI
(982)
Meta
(251)
RP15
(220)
RP35
(395)
RP55
(470)
RP75
(535)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(112)
Full
(1171)
Representative proteomes NCBI
(982)
Meta
(251)
RP15
(220)
RP35
(395)
RP55
(470)
RP75
(535)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(112)
Full
(1171)
Representative proteomes NCBI
(982)
Meta
(251)
RP15
(220)
RP35
(395)
RP55
(470)
RP75
(535)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Sarah Teichmann
Previous IDs: AFOR;
Type: Domain
Author: Finn RD, Bateman A
Number in seed: 112
Number in full: 1171
Average length of the domain: 383.30 aa
Average identity of full alignment: 27 %
Average coverage of the sequence by the domain: 62.78 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 19.6 19.6
Trusted cut-off 19.9 21.7
Noise cut-off 19.0 19.5
Model length: 382
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

AFOR_N

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the AFOR_C domain has been found. There are 10 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...