Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 7  species 0  interactions 325  sequences 3  architectures

Family: Zein (PF01559)

Summary: Zein seed storage protein

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Zein". More...

Zein Edit Wikipedia article

For other uses of "Zein", see Zein (disambiguation).
Zein
Identifiers
Symbol Zein
Pfam PF01559
InterPro IPR002530

Zein is a class of prolamine protein found in maize (corn). It is usually manufactured as a powder from corn gluten meal. Zein is one of the best understood plant proteins.[1] Pure zein is clear, odorless, tasteless, hard, water-insoluble, and edible, and it has a variety of industrial and food uses.[2][3]

Commercial uses

Historically, zein has been used in the manufacture of a wide variety of commercial products, including coatings for paper cups, soda bottle cap linings, clothing fabric,[4] buttons, adhesives, coatings and binders. The dominant historical use of zein was in the textile fibers market where it was produced under the name "Vicara".[2][5] With the development of synthetic alternatives, the use of zein in this market eventually disappeared. By using electrospinning, zein fibers have again been produced in the lab, where additional research will be performed to re-enter the fiber market.[6][7]

Zein's properties make it valuable in processed foods and pharmaceuticals, in competition with insect shellac. It is now used as a coating for candy, nuts, fruit, pills, and other encapsulated foods and drugs. In the United States, it may be labeled as "confectioner's glaze" (which may also refer to shellac-based glazes) and used as a coating on bakery products[8] or as "vegetable protein." It is classified as Generally Recognized as Safe (GRAS) by the U.S. Food and Drug Administration. For pharmaceutical coating, zein is preferred over food shellac, since it is all natural and requires less testing per the USP monographs.

Zein can be further processed into resins and other bioplastic polymers, which can be extruded or rolled into a variety of plastic products.[9][10] With increasing environmental concerns about synthetic coatings (such as PFOA) and the current higher prices of hydrocarbon-based petrochemicals, there is increased focus on zein as a raw material for a variety of nontoxic and renewable polymer applications, particularly in the paper industry.[11][12] Other reasons for a renewed interest in zein include concern about the landfill costs of plastics, and consumer interest in natural substances. There are also a number of potential new food industry applications.

Researchers at the University of Illinois at Urbana-Champaign and at William Wrigley Jr. Company have recently been studying the possibility of using zein to replace some of the gum base in chewing gum.[13] They are also studying medical applications such as using the zein molecule to "carry biocompounds to targeted sites in the human body".[14] There are a number of potential food safety applications that may be possible for zein-based packaging according to several researchers. A military contractor is researching the use of zein to protect MRE food packages.[15] Other packaging/food safety applications that have been researched include frozen foods,[16] ready-to-eat chicken,[17] and cheese and liquid eggs.[18] Food researchers in Japan have noted the ability of the zein molecule to act as a water barrier.[19]

While there are numerous existing and potential uses for zein, the main barrier to greater commercial success has been its historic high cost until recently. Zein pricing is now very competitive with food shellac. Some believe the solution is to extract zein as a byproduct in the manufacturing process for ethanol[20] or in new off-shore manufacture.

Flo Chemical Corporation, (www.zeinproducts.com), located in Ashburnham, MA, is the only North American Zein producer. They provide zein in both GMO and non-GMO for the food and pharmaceutical industries (USP compliant).

Gene family

Alpha-prolamins are the major seed storage proteins of species of the grass tribe Andropogonea. They are unusually rich in glutamine, proline, alanine, and leucine residues and their sequences show a series of tandem repeats presumed to be the result of multiple intragenic duplication.[21] In Zea mays (Maize), the 22 kDa and 19 kDa zeins are encoded by a large multigene family and are the major seed storage proteins accounting for 70% of the total zein fraction. Structurally the 22 kDa and 19 kDa zeins are composed of nine adjacent, topologically antiparallel helices clustered within a distorted cylinder. The 22 kDa alpha-zeins are encoded by 23 genes;[22] twenty-two of the members are found in a roughly tandem array forming a dense gene cluster. The expressed genes in the cluster are interspersed with nonexpressed genes. Interestingly, some of the expressed genes differ in their transcriptional regulation. Gene amplification appears to be in blocks of genes explaining the rapid and compact expansion of the cluster during the evolution of maize.

Other biodegradable polymers

References

  1. ^ Momany, Frank A.; Sessa, David J.; Lawton, John C.; Selling, Gordon W.; Hamaker, Sharon A. H.; and Willett, Julious L. "Structural Characterization of A-Zein" December 27, 2005, American Chemical Society
  2. ^ a b Lawton, John W. "Zein: A History of Processing and Use", November 1, 2002, American Association of Cereal Chemists
  3. ^ Gennadios, Aristippos"Protein-Based Films and Coatings" 2002
  4. ^ Commission on Life Sciences "Biobased Industrial Products: Research and Commercialization Priorities" 2002.
  5. ^ Horst, W.P. Amer Dyestuff Rep Vol. 38, 335, 1949.
  6. ^ Miyoshi, T., Toyohara, H., Minematsu, H. "Preparation of ultrafine fibrous zein membranes via electrospinning", Polymer International Vol. 54, no. 8, 2005.
  7. ^ Selling, G., Biswas, A., Patel, A., Walls, D., Dunlap, C., Wei, Y. "Impact of Solvent on Electrospinning of Zein and Analysis of Resulting Fibers", Macromolecular Chemistry and Physics Vol. 208, no. 9, 2007.
  8. ^ Kobs, Lisa "Shining Up Appearances", Food Product Design.
  9. ^ Lee, Richard "Multiple-use Corn zein-based Biodegradable Resins, Sheets, and Films are an attractive alternative to plastic", University of Illinois at Urbana-Champaign.
  10. ^ Lawton Jr., J.W. "Plasticizers for Zein:their Effect on Tensile Properties and Water Absorption of Zein Films" January 12, 2004, Cereal Chemistry.
  11. ^ Jabar, Anthony Jr; Bilodeau, Michael A.; Neivandt, David J.; Spender, Jonathan "Barrier Compositions and Articles Produced with the Compositions", December 29, 2005, United States Patent (pending)
  12. ^ Parris, Nicholas; Sykes, Marguerite; Dickey, Leland C.; Wiles, Jack L.; Urbanik, Thomas J.; Cooke, Peter H. "Recyclable zein-coated kraft paper", Progress in paper recycling Vol. 11, no. 3, May 2002.
  13. ^ McGowan B.A., Padua G.W., and Lee S-Y. "Formulation of Corn Zein Chewing Gum and Evaluation of Sensory Properties by the Time-Intensity Method", September, 2005, Journal of Food Science.
  14. ^ Picklesimer, Phyllis. "Nanotechnologist Plans to Build Things with Bricklike Corn Molecules," University of Illinois at Urbana-Champaign.
  15. ^ Bertrand, Kate, "Military packages put technology to the test," September 2005
  16. ^ Padua, Graciela W., Rakotonirainy, Andrianaivo, and Wang, Qin "Zein-Based Biodegradable Packaging for Frozen Foods", University of Illinois at Urbana-Champaign
  17. ^ Janes M.E.; Kooshesh S.; Johnson M.G. "Control of Listeria monocytogenes on the Surface of Refrigerated, Ready-to-eat Chicken Coated with Edible Zein Film" September, 2002, Journal of Food Science.
  18. ^ Dawson, Paul "Packaging Films Fight Bacteria and Help the Environment" Clemson University
  19. ^ Qiangxian Wu, Hiroshi Sakabe and Seiichiro Isobe "Studies on the toughness and water resistance of zein-based polymers by modification" June, 2003, National Food Research Institute, Japan.
  20. ^ Core, Jim. "Corn Protein Could Reduce Ethanol Production Costs," April 15, 2002, United States Department of Agriculture Agricultural Research Service.
  21. ^ Garratt R, Oliva G, Caracelli I, Leite A, Arruda P (January 1993). "Studies of the zein-like alpha-prolamins based on an analysis of amino acid sequences: implications for their evolution and three-dimensional structure". Proteins 15 (1): 88–99. doi:10.1002/prot.340150111. PMID 8451243. 
  22. ^ Song R, Llaca V, Linton E, Messing J (November 2001). "Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family". Genome Res. 11 (11): 1817–25. doi:10.1101/gr.197301. PMC 311139. PMID 11691845. 

External links

This article incorporates text from the public domain Pfam and InterPro IPR002530

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Zein seed storage protein Provide feedback

Zeins are seed storage proteins. They are unusually rich in glutamine, proline, alanine, and leucine residues and their sequences show a series of tandem repeats [1].

Literature references

  1. Garratt R, Oliva G, Caracelli I, Leite A, Arruda P; , Proteins 1993;15:88-99.: Studies of the zein-like alpha-prolamins based on an analysis of amino acid sequences: implications for their evolution and three-dimensional structure. PUBMED:8451243 EPMC:8451243


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR002530

Alpha-prolamins are the major seed storage proteins of species of the grass tribe Andropogonea. They are unusually rich in glutamine, proline, alanine, and leucine residues and their sequences show a series of tandem repeats presumed to be the result of multiple intragenic duplication [PUBMED:8451243]. In Zea mays (Maize), the 22 kDa and 19 kDa zeins are encoded by a large multigene family and are the major seed storage proteins accounting for 70% of the total zein fraction. Structurally the 22 kDa and 19 kDa zeins are composed of nine adjacent, topologically antiparallel helices clustered within a distorted cylinder. The 22 kDa alpha-zeins are encoded by 23 genes [PUBMED:11691845]; twenty-two of the members are found in a roughly tandem array forming a dense gene cluster. The expressed genes in the cluster are interspersed with nonexpressed genes. Interestingly, some of the expressed genes differ in their transcriptional regulation. Gene amplification appears to be in blocks of genes explaining the rapid and compact expansion of the cluster during the evolution of maize.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(9)
Full
(325)
Representative proteomes NCBI
(337)
Meta
(0)
RP15
(0)
RP35
(22)
RP55
(22)
RP75
(22)
Jalview View  View    View  View  View  View   
HTML View  View    View  View  View     
PP/heatmap 1 View    View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(9)
Full
(325)
Representative proteomes NCBI
(337)
Meta
(0)
RP15
(0)
RP35
(22)
RP55
(22)
RP75
(22)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(9)
Full
(325)
Representative proteomes NCBI
(337)
Meta
(0)
RP15
(0)
RP35
(22)
RP55
(22)
RP75
(22)
Raw Stockholm Download   Download     Download   Download   Download   Download    
Gzipped Download   Download     Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_181 (release 4.0)
Previous IDs: none
Type: Family
Author: Bateman A
Number in seed: 9
Number in full: 325
Average length of the domain: 134.90 aa
Average identity of full alignment: 41 %
Average coverage of the sequence by the domain: 97.79 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild --amino -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 24.6 24.6
Trusted cut-off 26.1 24.6
Noise cut-off 21.3 23.8
Model length: 246
Family (HMM) version: 11
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.