Summary: Adaptin N terminal region
Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.
The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.
This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.
Adaptin N terminal region Provide feedback
This family consists of the N terminal region of various alpha, beta and gamma subunits of the AP-1, AP-2 and AP-3 adaptor protein complexes. The adaptor protein (AP) complexes are involved in the formation of clathrin-coated pits and vesicles [1]. The N-terminal region of the various adaptor proteins (APs) is constant by comparison to the C-terminal which is variable within members of the AP-2 [2]; and it has been proposed that this constant region interacts with another uniform component of the coated vesicles [2].
Literature references
-
Kirchhausen T, Bonifacino JS, Riezman H; , Curr Opin Cell Biol 1997;9:488-495.: Linking cargo to vesicle formation: receptor tail interactions with coat proteins. PUBMED:9261055 EPMC:9261055
-
RAKirchhausen T, Nathanson KL, Matsui W, Vaisberg A, Chow EP, Burne C, Keen JH, Davis AE; , Proc Natl Acad Sci U S A 1989;86:2612-2616.: Structural and functional division into two domains of the large (100- to 115-kDa)chains of the clathrin-associated protein complex AP-2. PUBMED:2495531 EPMC:2495531
Internal database links
SCOOP: | Arm Arm_2 Arm_3 CLASP_N Cnd1 Cnd3 Cohesin_HEAT DUF3730 DUF577 HEAT HEAT_2 HEAT_EZ HEAT_PBS IBB Importin_rep_4 KAP MMS19_C Proteasom_PSMB RIX1 RTP1_C1 TIP120 V-ATPase_H_N Vac14_Fab1_bd |
Similarity to PfamA using HHSearch: | Cnd1 HEAT_2 |
External database links
SCOP: | 1gw5 |
This tab holds annotation information from the InterPro database.
InterPro entry IPR002553
Proteins synthesized on the ribosome and processed in the endoplasmic reticulum are transported from the Golgi apparatus to the trans-Golgi network (TGN), and from there via small carrier vesicles to their final destination compartment. This traffic is bidirectional, to ensure that proteins required to form vesicles are recycled. Vesicles have specific coat proteins (such as clathrin or coatomer) that are important for cargo selection and direction of transfer [PUBMED:15261670].
Clathrin coats contain both clathrin and adaptor complexes that link clathrin to receptors in coated vesicles. Clathrin-associated protein complexes are believed to interact with the cytoplasmic tails of membrane proteins, leading to their selection and concentration. The two major types of clathrin adaptor complexes are the heterotetrameric adaptor protein (AP) complexes, and the monomeric GGA (Golgi-localising, Gamma-adaptin ear domain homology, ARF-binding proteins) adaptors [PUBMED:17449236]. All AP complexes are heterotetramers composed of two large subunits (adaptins), a medium subunit (mu) and a small subunit (sigma). Each subunit has a specific function. Adaptin subunits recognise and bind to clathrin through their hinge region (clathrin box), and recruit accessory proteins that modulate AP function through their C-terminal appendage domains. By contrast, GGAs are monomers composed of four domains, which have functions similar to AP subunits: an N-terminal VHS (Vps27p/Hrs/Stam) domain, a GAT (GGA and Tom1) domain, a hinge region, and a C-terminal GAE (gamma-adaptin ear) domain. The GAE domain is similar to the AP gamma-adaptin ear domain, being responsible for the recruitment of accessory proteins that regulate clathrin-mediated endocytosis [PUBMED:12858162].
While clathrin mediates endocytic protein transport from ER to Golgi, coatomers (COPI, COPII) primarily mediate intra-Golgi transport, as well as the reverse Golgi to ER transport of dilysine-tagged proteins [PUBMED:14690497]. Coatomers reversibly associate with Golgi (non-clathrin-coated) vesicles to mediate protein transport and for budding from Golgi membranes [PUBMED:17041781]. Coatomer complexes are hetero-oligomers composed of at least an alpha, beta, beta', gamma, delta, epsilon and zeta subunits.
This entry represents the N-terminal domain of various adaptins from different AP clathrin adaptor complexes (including AP1, AP2, AP3 and AP4), and from the beta and gamma subunits of various coatomer (COP) adaptors. This domain has a 2-layer alpha/alpha fold that forms a right-handed superhelix, and is a member of the ARM repeat superfamily [PUBMED:12086608]. The N-terminal region of the various AP adaptor proteins share strong sequence identity; by contrast, the C-terminal domains of different adaptins share similar structural folds, but have little sequence identity [PUBMED:2495531]. It has been proposed that the N-terminal domain interacts with another uniform component of the coated vesicles.
Gene Ontology
The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.
Cellular component | membrane coat (GO:0030117) |
Biological process | intracellular protein transport (GO:0006886) |
vesicle-mediated transport (GO:0016192) |
Domain organisation
Below is a listing of the unique domain organisations or architectures in which this domain is found. More...
Loading domain graphics...
Pfam Clan
This family is a member of clan TPR (CL0020), which has the following description:
Tetratricopeptide-like repeats are found in a numerous and diverse proteins involved in such functions as cell cycle regulation, transcriptional control, mitochondrial and peroxisomal protein transport, neurogenesis and protein folding.
The clan contains the following 157 members:
Adaptin_N Alkyl_sulf_dimr ANAPC3 ANAPC5 ANAPC8 API5 Arm Arm_2 Arm_3 Atx10homo_assoc B56 BAF250_C BTAD CAS_CSE1 ChAPs CHIP_TPR_N CID CLASP_N Clathrin Clathrin-link Clathrin_H_link Clathrin_propel Cnd1 Cnd3 Coatomer_E Cohesin_HEAT Cohesin_load ComR_TPR COPI_C CPL CRM1_C Cse1 CTK3 DHR-2 DNA_alkylation Drf_FH3 Drf_GBD DUF1822 DUF2019 DUF2225 DUF3385 DUF3458_C DUF3808 DUF3856 DUF4042 DUF5691 DUF924 EST1 EST1_DNA_bind FAT Fis1_TPR_C Fis1_TPR_N Foie-gras_1 GUN4_N HAT HEAT HEAT_2 HEAT_EZ HEAT_PBS HemY_N HrpB1_HrpK HSM3_N IBB IBN_N IFRD Importin_rep_3 Importin_rep_6 KAP Leuk-A4-hydro_C LRV LRV_FeS MA3 MIF4G MIF4G_like MIF4G_like_2 MMS19_C Mo25 MRP-S27 Mtf2 NARP1 Neurochondrin Nipped-B_C Nro1 NSF Paf67 ParcG PC_rep PHAT PI3Ka PknG_TPR PPP5 PPR PPR_1 PPR_2 PPR_3 PPR_long PPTA Proteasom_PSMB PUF Rab5-bind Rapsyn_N RIX1 RNPP_C RPM2 RPN7 Sel1 SHNi-TPR SNAP SPO22 SRP_TPR_like ST7 Suf SusD-like SusD-like_2 SusD-like_3 SusD_RagB SYCP2_ARLD TAF6_C TAL_effector TAtT Tcf25 TIP120 TOM20_plant TPR_1 TPR_10 TPR_11 TPR_12 TPR_14 TPR_15 TPR_16 TPR_17 TPR_18 TPR_19 TPR_2 TPR_20 TPR_21 TPR_3 TPR_4 TPR_5 TPR_6 TPR_7 TPR_8 TPR_9 TPR_MalT UNC45-central Upf2 V-ATPase_H_C V-ATPase_H_N Vac14_Fab1_bd Vitellogenin_N Vps39_1 W2 Wzy_C_2 Xpo1 YcaO_C YfiO Zmiz1_NAlignments
We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...
View options
We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.
Seed (30) |
Full (14403) |
Representative proteomes | UniProt (25457) |
NCBI (31716) |
Meta (88) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (2371) |
RP35 (6355) |
RP55 (10520) |
RP75 (14693) |
||||||
Jalview | |||||||||
HTML | |||||||||
PP/heatmap | 1 |
1Cannot generate PP/Heatmap alignments for seeds; no PP data available
Key:
available,
not generated,
— not available.
Format an alignment
Download options
We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.
Seed (30) |
Full (14403) |
Representative proteomes | UniProt (25457) |
NCBI (31716) |
Meta (88) |
||||
---|---|---|---|---|---|---|---|---|---|
RP15 (2371) |
RP35 (6355) |
RP55 (10520) |
RP75 (14693) |
||||||
Raw Stockholm | |||||||||
Gzipped |
You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.
HMM logo
HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...
Trees
This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.
Note: You can also download the data file for the tree.
Curation and family details
This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
Curation
Seed source: | Pfam-B_491 (release 4.0) |
Previous IDs: | none |
Type: | Family |
Sequence Ontology: | SO:0100021 |
Author: |
Bashton M |
Number in seed: | 30 |
Number in full: | 14403 |
Average length of the domain: | 483.00 aa |
Average identity of full alignment: | 21 % |
Average coverage of the sequence by the domain: | 58.54 % |
HMM information
HMM build commands: |
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
|
||||||||||||
Model details: |
|
||||||||||||
Model length: | 524 | ||||||||||||
Family (HMM) version: | 21 | ||||||||||||
Download: | download the raw HMM for this family |
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Selections
Align selected sequences to HMM
Generate a FASTA-format file
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this domain across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Interactions
There are 6 interactions for this family. More...
Clat_adaptor_s Arf Arf Adaptin_N Clat_adaptor_s Adap_comp_subStructures
For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Adaptin_N domain has been found. There are 100 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.
Loading structure mapping...