Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 1  species 0  interactions 2  sequences 2  architectures

Family: Peptidase_C16 (PF01831)

Summary: Peptidase C16 family

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Peptidase C16 family Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR002705

This entry represents a domain found in betacoronavirus cysteine endopeptidases that belong to MEROPS peptidase families C30 (clan PA) and C16 (subfamiles C16A and C16B, clan CA). These peptidase are involved in viral polyprotein processing. All coronaviruses encodes between one and two accessory cysteine proteinases that recognise and process one or two sites in the amino-terminal half of the replicase polyprotein during assembly of the viral replication complex. MHV, HCoV and TGEV encode two accesssory proteinases, called coronavirus papain-like proteinase 1 and 2 (PL1-PRO and PL2-PRO). IBV and SARS encodes only one called PL-PRO [PUBMED:10725411]. Coronavirus papain-like proteinases 1 and 2 have restricted specificities, cleaving respectively two and one bond(s)in the polyprotein. This restricted activity may be due to extended specificity sites: Arg or Lys at the cleavage site position P5 are required for PL1-PRO [PUBMED:8396668], and Phe at the cleavage site position P6 is required for PL2-PRO [PUBMED:12805436]. PL1-PRO releases p28 and p65 from the N terminus of the polyprotein; PL2-PRO cleaves between p210 and p150.

A cysteine peptidase is a proteolytic enzymes that hydrolyses a peptide bond using the thiol group of a cysteine residue as a nucleophile. Hydrolysis involves usually a catalytic triad consisting of the thiol group of the cysteine, the imidazolium ring of a histidine, and a third residue, usually asparagine or aspartic acid, to orientate and activate the imidazolium ring. In only one family of cysteine peptidases, is the role of the general base assigned to a residue other than a histidine: in peptidases from family C89 (acid ceramidase) an arginine is the general base. Cysteine peptidases can be grouped into fourteen different clans, with members of each clan possessing a tertiary fold unique to the clan. Four clans of cysteine peptidases share structural similarities with serine and threonine peptidases and asparagine lyases. From sequence similarities, cysteine peptidases can be clustered into over 80 different families [PUBMED:11517925]. Clans CF, CM, CN, CO, CP and PD contain only one family.

Cysteine peptidases are often active at acidic pH and are therefore confined to acidic environments, such as the animal lysosome or plant vacuole. Cysteine peptidases can be endopeptidases, aminopeptidases, carboxypeptidases, dipeptidyl-peptidases or omega-peptidases. They are inhibited by cysteine chelators such as iodoacetate, iodoacetic acid, N-ethylmaleimide or p-chloromercuribenzoate.

Clan CA includes proteins with a papain-like fold. There is a catalytic triad which occurs in the order: Cys/His/Asn (or Asp). A fourth residue, usually Gln, is important for stabilising the acyl intermediate that forms during catalysis, and this precedes the active site Cys. The fold consists of two subdomains with the active site between them. One subdomain consists of a bundle of helices, with the catalytic Cys at the end of one of them, and the other subdomain is a beta-barrel with the active site His and Asn (or Asp). There are over thirty families in the clan, and tertiary structures have been solved for members of most of these. Peptidases in clan CA are usually sensitive to the small molecule inhibitor E64, which is ineffective against peptidases from other clans of cysteine peptidases [PUBMED:7044372].

Clan CD includes proteins with a caspase-like fold. Proteins in the clan have an alpha/beta/alpha sandwich structure. There is a catalytic dyad which occurs in the order His/Cys. The active site His occurs in a His-Gly motif and the active site Cys occurs in an Ala-Cys motif; both motifs are preceded by a block of hydrophobic residues [PUBMED:9891971]. Specificity is predominantly directed towards residues that occupy the S1 binding pocket, so that caspases cleave aspartyl bonds, legumains cleave asparaginyl bonds, and gingipains cleave lysyl or arginyl bonds.

Clan CE includes proteins with an adenain-like fold. The fold consists of two subdomains with the active site between them. One domain is a bundle of helices, and the other a beta barrell. The subdomains are in the opposite order to those found in peptidases from clan CA, and this is reflected in the order of active site residues: His/Asn/Gln/Cys. This has prompted speculation that proteins in clans CA and CE are related, and that members of one clan are derived from a circular permutation of the structure of the other.

Clan CL includes proteins with a sortase B-like fold. Peptidases in the clan hydrolyse and transfer bacterial cell wall peptides. The fold shows a closed beta barrel decorated with helices with the active site at one end of the barrel [PUBMED:14725770]. The active site consists of a His/Cys catalytic dyad.

Cysteine peptidases with a chymotrypsin-like fold are included in clan PA, which also includes serine peptidases. Cysteine peptidases that are N-terminal nucleophile hydrolases are included in clan PB. Cysteine peptidases with a tertiary structure similar to that of the serine-type aspartyl dipeptidase are included in clan PC. Cysteine peptidases with an intein-like fold are included in clan PD, which also includes asparagine lyases.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(1)
Full
(2)
Representative proteomes UniProt
(268)
NCBI
(271)
Meta
(0)
RP15
(2)
RP35
(2)
RP55
(2)
RP75
(3)
Jalview View  View  View  View  View  View  View  View   
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(1)
Full
(2)
Representative proteomes UniProt
(268)
NCBI
(271)
Meta
(0)
RP15
(2)
RP35
(2)
RP55
(2)
RP75
(3)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(1)
Full
(2)
Representative proteomes UniProt
(268)
NCBI
(271)
Meta
(0)
RP15
(2)
RP35
(2)
RP55
(2)
RP75
(3)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: MEROPS
Previous IDs: none
Type: Family
Author: Bateman A
Number in seed: 1
Number in full: 2
Average length of the domain: 249.00 aa
Average identity of full alignment: 100 %
Average coverage of the sequence by the domain: 4.28 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 17690987 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.2 20.2
Trusted cut-off 595.4 591.8
Noise cut-off 19.2 16.3
Model length: 249
Family (HMM) version: 15
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.