Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
27  structures 8417  species 1  interaction 13017  sequences 8  architectures

Family: Thiamine_BP (PF01910)

Summary: Thiamine-binding protein

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Domain of unknown function". More...

Domain of unknown function Edit Wikipedia article

A domain of unknown function (DUF) is a protein domain that has no characterised function. These families have been collected together in the Pfam database using the prefix DUF followed by a number, with examples being DUF2992 and DUF1220. There are now over 3,000 DUF families within the Pfam database representing over 20% of known families.[1]


The DUF naming scheme was introduced by Chris Ponting, through the addition of DUF1 and DUF2 to the SMART database.[2] These two domains were found to be widely distributed in bacterial signaling proteins. Subsequently, the functions of these domains were identified and they have since been renamed as the GGDEF domain and EAL domain respectively.


Structural genomics programmes have attempted to understand the function of DUFs through structure determination. The structures of over 250 DUF families have been solved.[3] This work showed that about two thirds of DUF families had a structure similar to a previously solved one and therefore likely to be divergent members of existing protein superfamilies, whereas about one third possessed a novel protein fold.

Frequency and conservation

Protein domains and DUFs in different domains of life. Left: Annotated domains. Right: domains of unknown function. Not all overlaps shown.[4]

More than 20% of all protein domains were annotated as DUFs in 2013. About 2,700 DUFs are found in bacteria compared with just over 1,500 in eukaryotes. Over 800 DUFs are shared between bacteria and eukaryotes, and about 300 of these are also present in archaea. A total of 2,786 bacterial Pfam domains even occur in animals, including 320 DUFs.[4]

Role in biology

Many DUFs are highly conserved, indicating an important role in biology. However, many such DUFs are not essential, hence their biological role often remains unknown. For instance, DUF143 is present in most bacteria and eukaryotic genomes.[5] However, when it was deleted in Escherichia coli no obvious phenotype was obvious. Later it was shown that the proteins that contain DUF143, are ribosomal silencing factors that block the assembly of the two ribosomal subunits.[5] While this function is not essential, it helps the cells to adapt to low nutrient conditions by shutting down protein biosynthesis. As a result, these proteins and the DUF only becomes relevant when the cells starve.[5] It is thus believed that many DUFs (or proteins of unknown function, PUFs) are only required under certain conditions.

Essential DUFs (eDUFs)

Goodacre et al. identified 238 DUFs in 355 essential proteins (in 16 model bacterial species), most of which represent single-domain proteins, clearly establishing the biological essentiality of DUFs. These DUFs are called "essential DUFs" or eDUFs.[4]

External links


  1. ^ Bateman A, Coggill P, Finn RD (October 2010). "DUFs: families in search of function". Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 (Pt 10): 1148–52. doi:10.1107/S1744309110001685. PMC 2954198. PMID 20944204. 
  2. ^ Schultz J, Milpetz F, Bork P, Ponting CP (May 1998). "SMART, a simple modular architecture research tool: identification of signaling domains". Proc. Natl. Acad. Sci. U.S.A. 95 (11): 5857–64. doi:10.1073/pnas.95.11.5857. PMC 34487. PMID 9600884. 
  3. ^ Jaroszewski L, Li Z, Krishna SS; et al. (September 2009). "Exploration of uncharted regions of the protein universe". PLoS Biol. 7 (9): e1000205. doi:10.1371/journal.pbio.1000205. PMC 2744874. PMID 19787035. 
  4. ^ a b c Goodacre, N. F.; Gerloff, D. L.; Uetz, P. (2013). "Protein Domains of Unknown Function Are Essential in Bacteria". MBio 5 (1): e00744–e00713. doi:10.1128/mBio.00744-13. PMID 24381303.  edit
  5. ^ a b c Häuser, R.; Pech, M.; Kijek, J.; Yamamoto, H.; Titz, B. R.; Naeve, F.; Tovchigrechko, A.; Yamamoto, K.; Szaflarski, W.; Takeuchi, N.; Stellberger, T.; Diefenbacher, M. E.; Nierhaus, K. H.; Uetz, P. (2012). Hughes, Diarmaid, ed. "RsfA (YbeB) Proteins Are Conserved Ribosomal Silencing Factors". PLoS Genetics 8 (7): e1002815. doi:10.1371/journal.pgen.1002815. PMC 3400551. PMID 22829778.  edit

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Thiamine-binding protein Provide feedback

The crystal structure of two of these members shows that this domain has a ferredoxin like fold and is likely to exists as at least homodimers. Sulphate ions are are located at the dimer interfaces, which are thought to confer additional stability. Although the function of this domain remains to be identified, its structure suggests a role in protein-protein interactions possibly regulated by the binding of small-molecule ligands [1]. Solution of the structure of the hyperthermophilic anaerobic Thermotoga maritima sequence, UniProtKB:Q9WYV6 shows that this has a beta-alpha-beta-beta-alpha-beta ferredoxin-like fold and assembles as a homotetramer. It was possible to identify a pocket in each monmer that bound an unidentified ligand. It was also found that it bound charged thiamine though not hydroxymethyl pyrimidine. It is proposed that it is transporting charged thiamine around the cytoplasm. Under oxidative conditions this bacterium is under stress, and the transcriiptional unit within which this protein is expressed is up-regulated in these conditions, suggesting that the chelation of cytoplasmic thaimine is part of the response mechanism to such oxidatvie stress, which is mediated by this family [2].

Literature references

  1. Tao X, Khayat R, Christendat D, Savchenko A, Xu X, Goldsmith-Fischman S, Honig B, Edwards A, Arrowsmith CH, Tong L; , Proteins 2003;52:478-480.: Crystal structures of MTH1187 and its yeast ortholog YBL001c. PUBMED:12866058 EPMC:12866058

  2. Dermoun Z, Foulon A, Miller MD, Harrington DJ, Deacon AM, Sebban-Kreuzer C, Roche P, Lafitte D, Bornet O, Wilson IA, Dolla A;, J Mol Biol. 2010;400:463-476.: TM0486 from the hyperthermophilic anaerobe Thermotoga maritima is a thiamin-binding protein involved in response of the cell to oxidative conditions. PUBMED:20471400 EPMC:20471400

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR002767

This entry contains several hypothetical proteins of unknown function found in archaebacteria, eukaryotes and eubacteria. The structures of YBL001c from Saccharomyces cerevisiae and its homologue MTH1187 from the archaea Methanobacterium thermoautotrophicum have been determined [PUBMED:12866058]. These proteins have a ferredoxin-like alpha/beta sandwich structure with anti-parallel beta-sheets. Generally, they have two domains that form a single beta-sheet dimer, where two dimers pack sheet-to-sheet into a tetramer, some proteins having an extra C-terminal helix.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan MTH1187-YkoF (CL0360), which has the following description:

Putative cell-wall biogenesis proteins and HMP-binding proteins, all with the same Ferredoxin fold, are included in this superfamily.

The clan contains the following 2 members:

Thiamine_BP Ykof


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Enright A
Previous IDs: DUF77;
Type: Domain
Author: Enright A, Ouzounis C, Cerutti L
Number in seed: 88
Number in full: 13017
Average length of the domain: 92.80 aa
Average identity of full alignment: 39 %
Average coverage of the sequence by the domain: 89.83 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 80369284 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 24.9 24.9
Trusted cut-off 24.9 24.9
Noise cut-off 24.8 24.8
Model length: 92
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


There is 1 interaction for this family. More...



For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Thiamine_BP domain has been found. There are 27 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...