Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
10  structures 907  species 1  interaction 2269  sequences 58  architectures

Family: A_deamin (PF02137)

Summary: Adenosine-deaminase (editase) domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Adenosine deaminase". More...

Adenosine deaminase Edit Wikipedia article

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Adenosine-deaminase (editase) domain Provide feedback

Adenosine deaminases acting on RNA (ADARs) can deaminate adenosine to form inosine. In long double-stranded RNA, this process is non-specific; it occurs site-specifically in RNA transcripts. The former is important in defence against viruses, whereas the latter may affect splicing or untranslated regions. They are primarily nuclear proteins, but a longer isoform of ADAR1 is found predominantly in the cytoplasm. ADARs are derived from the Tad1-like tRNA deaminases that are present across eukaryotes. These in turn belong to the nucleotide/nucleic acid deaminase superfamily and are characterized by a distinct insert between the two conserved cysteines that are involved in binding zinc [2].

Literature references

  1. Keegan LP, Leroy A, Sproul D, O'Connell MA; , Genome Biol 2004;5:209.: Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. PUBMED:14759252 EPMC:14759252

  2. Iyer LM, Zhang D, Rogozin IB, Aravind L;, Nucleic Acids Res. 2011; [Epub ahead of print]: Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. PUBMED:21890906 EPMC:21890906


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR002466

Editase (EC) are enzymes that alter mRNA by catalyzing the site-selective deamination of adenosine residue into inosine residue. The editase domain contains the active site and binds three Zn atoms [PUBMED:9159072].

Several editases share a common global arrangement of domains, from N to C terminus: two 'double-stranded RNA-specific adenosine deaminase' (DRADA) repeat domains (INTERPRO), followed by three 'double-stranded RNA binding' (DsRBD) domains, followed by the editase domain. Other editases have a simplified domains structure with no DRADA_REP and possibly fewer DSRBD domains. Editase that deaminate cytidine are not detected by this signature.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan CDA (CL0109), which has the following description:

This clan contains both free nucleotide and nucleic acid deaminases that act on adenosine, cytosine, guanine and cytidine, and are collectively known as the deaminase superfamily. The conserved fold consists of a three-layered alpha/beta/alpha structure with 3 helices and 4 strands in the 2134 order [1,2].This superfamily is further divided into two major divisions based on the presence of a helix (helix-4) that renders the terminal strands (strands 4 and 5) either parallel to each other in its presence, or anti-parallel in its absence [2]. Structurally, the deaminase-like fold is present in four other superfamilies including the JAB-like metalloproteins, the C-terminal AICAR transformylase-catalyzing domains of PurH, Tm1506 and the formate dehydrogenase accessory subunit FdhD. The active site of the deaminases is composed of three residues that coordinate a zinc ion between conserved helices 2 and 3. The residues are typically found as [HCD]xE and CxxC motifs at the beginning of helices 2 and 3. The zinc ion activates a water molecule, which forms a tetrahderal intermediate with the carbon atom that is linked to the amine group. This is followed by deamination of the base.

The clan contains the following 33 members:

A_deamin AICARFT_IMPCHas AID APOBEC1 APOBEC2 APOBEC3 APOBEC4 APOBEC4_like APOBEC_C APOBEC_N Bd3614-deam DAAD dCMP_cyt_deam_1 dCMP_cyt_deam_2 DYW_deaminase FdhD-NarQ Inv-AAD LmjF365940-deam LpxI_C MafB19-deam NAD1 NAD2 OTT_1508_deam Pput2613-deam SCP1201-deam SNAD1 SNAD2 SNAD3 SNAD4 TM1506 Toxin-deaminase XOO_2897-deam YwqJ-deaminase

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(98)
Full
(2269)
Representative proteomes UniProt
(3352)
NCBI
(5828)
Meta
(16)
RP15
(588)
RP35
(1101)
RP55
(1667)
RP75
(1989)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(98)
Full
(2269)
Representative proteomes UniProt
(3352)
NCBI
(5828)
Meta
(16)
RP15
(588)
RP35
(1101)
RP55
(1667)
RP75
(1989)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(98)
Full
(2269)
Representative proteomes UniProt
(3352)
NCBI
(5828)
Meta
(16)
RP15
(588)
RP35
(1101)
RP55
(1667)
RP75
(1989)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: IPR002466
Previous IDs: none
Type: Family
Sequence Ontology: SO:0100021
Author: Mian N , Bateman A , Iyer LM , Zhang D , Aravind L
Number in seed: 98
Number in full: 2269
Average length of the domain: 277.50 aa
Average identity of full alignment: 26 %
Average coverage of the sequence by the domain: 54.60 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 19.8 19.8
Trusted cut-off 20.3 19.9
Noise cut-off 19.6 19.7
Model length: 329
Family (HMM) version: 18
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

A_deamin

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the A_deamin domain has been found. There are 10 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...