Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
4  structures 176  species 0  interactions 438  sequences 11  architectures

Family: Oest_recep (PF02159)

Summary: Oestrogen receptor

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Estrogen receptor". More...

Estrogen receptor Edit Wikipedia article

estrogen receptor 1 (ER-alpha)
PBB Protein ESR1 image.png
A dimer of the ligand-binding region of ERα (PDB rendering based on 3erd​).
Alt. symbolsER-α, NR3A1
NCBI gene2099
Other data
LocusChr. 6 q24-q27
estrogen receptor 2 (ER-beta)
Estrogen receptor beta 1U3S.png
A dimer of the ligand-binding region of ERβ (PDB rendering based on 1u3s​).
Alt. symbolsER-β, NR3A2
NCBI gene2100
Other data
LocusChr. 14 q21-q22

Estrogen receptors (ERs) are a group of proteins found inside cells. They are receptors that are activated by the hormone estrogen (17β-estradiol).[1] Two classes of ER exist: nuclear estrogen receptors (ERα and ERβ), which are members of the nuclear receptor family of intracellular receptors, and membrane estrogen receptors (mERs) (GPER (GPR30), ER-X, and Gq-mER), which are mostly G protein-coupled receptors. This article refers to the former (ER).

Once activated by estrogen, the ER is able to translocate into the nucleus and bind to DNA to regulate the activity of different genes (i.e. it is a DNA-binding transcription factor). However, it also has additional functions independent of DNA binding.[2]

As hormone receptors for sex steroids (steroid hormone receptors), ERs, androgen receptors (ARs), and progesterone receptors (PRs) are important in sexual maturation and gestation.


There are two different forms of the estrogen receptor, usually referred to as α and β, each encoded by a separate gene (ESR1 and ESR2, respectively). Hormone-activated estrogen receptors form dimers, and, since the two forms are coexpressed in many cell types, the receptors may form ERα (αα) or ERβ (ββ) homodimers or ERαβ (αβ) heterodimers.[3] Estrogen receptor alpha and beta show significant overall sequence homology, and both are composed of five domains designated A/B through F (listed from the N- to C-terminus; amino acid sequence numbers refer to human ER).

The domain structures of ERα and ERβ, including some of the known phosphorylation sites involved in ligand-independent regulation.

The N-terminal A/B domain is able to transactivate gene transcription in the absence of bound ligand (e.g., the estrogen hormone). While this region is able to activate gene transcription without ligand, this activation is weak and more selective compared to the activation provided by the E domain. The C domain, also known as the DNA-binding domain, binds to estrogen response elements in DNA. The D domain is a hinge region that connects the C and E domains. The E domain contains the ligand binding cavity as well as binding sites for coactivator and corepressor proteins. The E-domain in the presence of bound ligand is able to activate gene transcription. The C-terminal F domain function is not entirely clear and is variable in length.

Estrogen receptor alpha
N-terminal AF1 domain
Estrogen and estrogen related receptor C-terminal domain

Due to alternative RNA splicing, several ER isoforms are known to exist. At least three ERα and five ERβ isoforms have been identified. The ERβ isoforms receptor subtypes can transactivate transcription only when a heterodimer with the functional ERß1 receptor of 59 kDa is formed. The ERß3 receptor was detected at high levels in the testis. The two other ERα isoforms are 36 and 46kDa.[4][5]

Only in fish, but not in humans, an ERγ receptor has been described.[6]


In humans, the two forms of the estrogen receptor are encoded by different genes, ESR1 and ESR2 on the sixth and fourteenth chromosome (6q25.1 and 14q23.2), respectively.


Both ERs are widely expressed in different tissue types, however there are some notable differences in their expression patterns:[7]

The ERs are regarded to be cytoplasmic receptors in their unliganded state, but visualization research has shown that only a small fraction of the ERs reside in the cytoplasm, with most ER constitutively in the nucleus.[11] The "ERα" primary transcript gives rise to several alternatively spliced variants of unknown function.[12]





Binding and functional selectivity

The ER's helix 12 domain plays a crucial role in determining interactions with coactivators and corepressors and, therefore, the respective agonist or antagonist effect of the ligand.[13][14]

Different ligands may differ in their affinity for alpha and beta isoforms of the estrogen receptor:

Subtype selective estrogen receptor modulators preferentially bind to either the α- or the β-subtype of the receptor. In addition, the different estrogen receptor combinations may respond differently to various ligands, which may translate into tissue selective agonistic and antagonistic effects.[16] The ratio of α- to β- subtype concentration has been proposed to play a role in certain diseases.[17]

The concept of selective estrogen receptor modulators is based on the ability to promote ER interactions with different proteins such as transcriptional coactivator or corepressors. Furthermore, the ratio of coactivator to corepressor protein varies in different tissues.[18] As a consequence, the same ligand may be an agonist in some tissue (where coactivators predominate) while antagonistic in other tissues (where corepressors dominate). Tamoxifen, for example, is an antagonist in breast and is, therefore, used as a breast cancer treatment[19] but an ER agonist in bone (thereby preventing osteoporosis) and a partial agonist in the endometrium (increasing the risk of uterine cancer).

Signal transduction

Since estrogen is a steroidal hormone, it can pass through the phospholipid membranes of the cell, and receptors therefore do not need to be membrane-bound in order to bind with estrogen.


In the absence of hormone, estrogen receptors are largely located in the cytosol. Hormone binding to the receptor triggers a number of events starting with migration of the receptor from the cytosol into the nucleus, dimerization of the receptor, and subsequent binding of the receptor dimer to specific sequences of DNA known as hormone response elements. The DNA/receptor complex then recruits other proteins that are responsible for the transcription of downstream DNA into mRNA and finally protein that results in a change in cell function. Estrogen receptors also occur within the cell nucleus, and both estrogen receptor subtypes have a DNA-binding domain and can function as transcription factors to regulate the production of proteins.

The receptor also interacts with activator protein 1 and Sp-1 to promote transcription, via several coactivators such as PELP-1.[2]

Direct acetylation of the estrogen receptor alpha at the lysine residues in hinge region by p300 regulates transactivation and hormone sensitivity.[20]


Some estrogen receptors associate with the cell surface membrane and can be rapidly activated by exposure of cells to estrogen.[21][22]

In addition, some ER may associate with cell membranes by attachment to caveolin-1 and form complexes with G proteins, striatin, receptor tyrosine kinases (e.g., EGFR and IGF-1), and non-receptor tyrosine kinases (e.g., Src).[2][21] Through striatin, some of this membrane bound ER may lead to increased levels of Ca2+ and nitric oxide (NO).[23] Through the receptor tyrosine kinases, signals are sent to the nucleus through the mitogen-activated protein kinase (MAPK/ERK) pathway and phosphoinositide 3-kinase (Pl3K/AKT) pathway.[24] Glycogen synthase kinase-3 (GSK)-3β inhibits transcription by nuclear ER by inhibiting phosphorylation of serine 118 of nuclear ERα. Phosphorylation of GSK-3β removes its inhibitory effect, and this can be achieved by the PI3K/AKT pathway and the MAPK/ERK pathway, via rsk.

17β-Estradiol has been shown to activate the G protein-coupled receptor GPR30.[25] However the subcellular localization and role of this receptor are still object of controversy.[26]


Nolvadex (tamoxifen) 20 mg
Arimidex (anastrozole) 1 mg


Estrogen receptors are over-expressed in around 70% of breast cancer cases, referred to as "ER-positive", and can be demonstrated in such tissues using immunohistochemistry. Two hypotheses have been proposed to explain why this causes tumorigenesis, and the available evidence suggests that both mechanisms contribute:

The result of both processes is disruption of cell cycle, apoptosis and DNA repair, which increases the chance of tumour formation. ERα is certainly associated with more differentiated tumours, while evidence that ERβ is involved is controversial. Different versions of the ESR1 gene have been identified (with single-nucleotide polymorphisms) and are associated with different risks of developing breast cancer.[19]

Estrogen and the ERs have also been implicated in breast cancer, ovarian cancer, colon cancer, prostate cancer, and endometrial cancer. Advanced colon cancer is associated with a loss of ERβ, the predominant ER in colon tissue, and colon cancer is treated with ERβ-specific agonists.[27]

Endocrine therapy for breast cancer involves selective estrogen receptor modulators (SERMS), such as tamoxifen, which behave as ER antagonists in breast tissue, or aromatase inhibitors, such as anastrozole. ER status is used to determine sensitivity of breast cancer lesions to tamoxifen and aromatase inhibitors.[28] Another SERM, raloxifene, has been used as a preventive chemotherapy for women judged to have a high risk of developing breast cancer.[29] Another chemotherapeutic anti-estrogen, ICI 182,780 (Faslodex), which acts as a complete antagonist, also promotes degradation of the estrogen receptor.

However, de novo resistance to endocrine therapy undermines the efficacy of using competitive inhibitors like tamoxifen. Hormone deprivation through the use of aromatase inhibitors is also rendered futile.[30] Massively parallel genome sequencing has revealed the common presence of point mutations on ESR1 that are drivers for resistance, and promote the agonist conformation of ERα without the bound ligand. Such constitutive, estrogen-independent activity is driven by specific mutations, such as the D538G or Y537S/C/N mutations, in the ligand binding domain of ESR1 and promote cell proliferation and tumor progression without hormone stimulation.[31]


The metabolic effects of estrogen in postmenopausal women has been linked to the genetic polymorphism of estrogen receptor beta (ER-β).[32]


Studies in female mice have shown that estrogen receptor-alpha declines in the pre-optic hypothalamus as they grow old. Female mice that were given a calorically restricted diet during the majority of their lives maintained higher levels of ERα in the pre-optic hypothalamus than their non-calorically restricted counterparts.[8]


A dramatic demonstration of the importance of estrogens in the regulation of fat deposition comes from transgenic mice that were genetically engineered to lack a functional aromatase gene. These mice have very low levels of estrogen and are obese.[33] Obesity was also observed in estrogen deficient female mice lacking the follicle-stimulating hormone receptor.[34] The effect of low estrogen on increased obesity has been linked to estrogen receptor alpha.[35]


Estrogen receptors were first identified by Elwood V. Jensen at the University of Chicago in 1958,[36][37] for which Jensen was awarded the Lasker Award.[38] The gene for a second estrogen receptor (ERβ) was identified in 1996 by Kuiper et al. in rat prostate and ovary using degenerate ERalpha primers.[39]

See also


  1. ^ Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA (Dec 2006). "International Union of Pharmacology. LXIV. Estrogen receptors". Pharmacological Reviews. 58 (4): 773–81. doi:10.1124/pr.58.4.8. PMID 17132854.
  2. ^ a b c Levin ER (Aug 2005). "Integration of the extranuclear and nuclear actions of estrogen". Molecular Endocrinology. 19 (8): 1951–9. doi:10.1210/me.2004-0390. PMC 1249516. PMID 15705661.
  3. ^ Li X, Huang J, Yi P, Bambara RA, Hilf R, Muyan M (Sep 2004). "Single-chain estrogen receptors (ERs) reveal that the ERalpha/beta heterodimer emulates functions of the ERalpha dimer in genomic estrogen signaling pathways". Molecular and Cellular Biology. 24 (17): 7681–94. doi:10.1128/MCB.24.17.7681-7694.2004. PMC 506997. PMID 15314175.
  4. ^ Nilsson S, Mäkelä S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (Oct 2001). "Mechanisms of estrogen action". Physiological Reviews. 81 (4): 1535–65. doi:10.1152/physrev.2001.81.4.1535. PMID 11581496.
  5. ^ Leung YK, Mak P, Hassan S, Ho SM (Aug 2006). "Estrogen receptor (ER)-beta isoforms: a key to understanding ER-beta signaling". Proceedings of the National Academy of Sciences of the United States of America. 103 (35): 13162–7. doi:10.1073/pnas.0605676103. PMC 1552044. PMID 16938840.
  6. ^ Hawkins MB, Thornton JW, Crews D, Skipper JK, Dotte A, Thomas P (Sep 2000). "Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts". Proceedings of the National Academy of Sciences of the United States of America. 97 (20): 10751–6. doi:10.1073/pnas.97.20.10751. PMC 27095. PMID 11005855.
  7. ^ Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS (Nov 1997). "Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse". Endocrinology. 138 (11): 4613–21. doi:10.1210/en.138.11.4613. PMID 9348186.
  8. ^ a b Yaghmaie F, Saeed O, Garan SA, Freitag W, Timiras PS, Sternberg H (Jun 2005). "Caloric restriction reduces cell loss and maintains estrogen receptor-alpha immunoreactivity in the pre-optic hypothalamus of female B6D2F1 mice" (PDF). Neuro Endocrinology Letters. 26 (3): 197–203. PMID 15990721.
  9. ^ Hess RA (Jul 2003). "Estrogen in the adult male reproductive tract: a review". Reproductive Biology and Endocrinology. 1 (52): 52. doi:10.1186/1477-7827-1-52. PMC 179885. PMID 12904263.
  10. ^ Babiker FA, De Windt LJ, van Eickels M, Grohe C, Meyer R, Doevendans PA (Feb 2002). "Estrogenic hormone action in the heart: regulatory network and function". Cardiovascular Research. 53 (3): 709–19. doi:10.1016/S0008-6363(01)00526-0. PMID 11861041.
  11. ^ Htun H, Holth LT, Walker D, Davie JR, Hager GL (Feb 1999). "Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor". Molecular Biology of the Cell. 10 (2): 471–86. doi:10.1091/mbc.10.2.471. PMC 25181. PMID 9950689.
  12. ^ Pfeffer U, Fecarotta E, Vidali G (May 1995). "Coexpression of multiple estrogen receptor variant messenger RNAs in normal and neoplastic breast tissues and in MCF-7 cells". Cancer Research. 55 (10): 2158–65. PMID 7743517.
  13. ^ Ascenzi P, Bocedi A, Marino M (Aug 2006). "Structure-function relationship of estrogen receptor alpha and beta: impact on human health". Molecular Aspects of Medicine. 27 (4): 299–402. doi:10.1016/j.mam.2006.07.001. PMID 16914190.
  14. ^ Bourguet W, Germain P, Gronemeyer H (Oct 2000). "Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications". Trends in Pharmacological Sciences. 21 (10): 381–8. doi:10.1016/S0165-6147(00)01548-0. PMID 11050318.
  15. ^ a b c Zhu BT, Han GZ, Shim JY, Wen Y, Jiang XR (Sep 2006). "Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: Insights into the structural determinants favoring a differential subtype binding". Endocrinology. 147 (9): 4132–50. doi:10.1210/en.2006-0113. PMID 16728493.
  16. ^ Kansra S, Yamagata S, Sneade L, Foster L, Ben-Jonathan N (Jul 2005). "Differential effects of estrogen receptor antagonists on pituitary lactotroph proliferation and prolactin release". Molecular and Cellular Endocrinology. 239 (1–2): 27–36. doi:10.1016/j.mce.2005.04.008. PMID 15950373.
  17. ^ Bakas P, Liapis A, Vlahopoulos S, Giner M, Logotheti S, Creatsas G, Meligova AK, Alexis MN, Zoumpourlis V (Nov 2008). "Estrogen receptor alpha and beta in uterine fibroids: a basis for altered estrogen responsiveness". Fertility and Sterility. 90 (5): 1878–85. doi:10.1016/j.fertnstert.2007.09.019. PMID 18166184.
  18. ^ Shang Y, Brown M (Mar 2002). "Molecular determinants for the tissue specificity of SERMs". Science. 295 (5564): 2465–8. doi:10.1126/science.1068537. PMID 11923541.
  19. ^ a b Deroo BJ, Korach KS (Mar 2006). "Estrogen receptors and human disease". The Journal of Clinical Investigation. 116 (3): 561–70. doi:10.1172/JCI27987. PMC 2373424. PMID 16511588.
  20. ^ Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SA, Lopez GN, Kushner PJ, Pestell RG (May 2001). "Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity". The Journal of Biological Chemistry. 276 (21): 18375–83. doi:10.1074/jbc.M100800200. PMID 11279135.
  21. ^ a b Zivadinovic D, Gametchu B, Watson CS (2005). "Membrane estrogen receptor-alpha levels in MCF-7 breast cancer cells predict cAMP and proliferation responses". Breast Cancer Research. 7 (1): R101–12. doi:10.1186/bcr958. PMC 1064104. PMID 15642158.
  22. ^ Björnström L, Sjöberg M (Jun 2004). "Estrogen receptor-dependent activation of AP-1 via non-genomic signalling". Nuclear Receptor. 2 (1): 3. doi:10.1186/1478-1336-2-3. PMC 434532. PMID 15196329.
  23. ^ Lu Q, Pallas DC, Surks HK, Baur WE, Mendelsohn ME, Karas RH (Dec 2004). "Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor alpha". Proceedings of the National Academy of Sciences of the United States of America. 101 (49): 17126–31. doi:10.1073/pnas.0407492101. PMC 534607. PMID 15569929.
  24. ^ Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (Dec 1995). "Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase". Science. 270 (5241): 1491–4. doi:10.1126/science.270.5241.1491. PMID 7491495.
  25. ^ Prossnitz ER, Arterburn JB, Sklar LA (Feb 2007). "GPR30: A G protein-coupled receptor for estrogen". Molecular and Cellular Endocrinology. 265-266: 138–42. doi:10.1016/j.mce.2006.12.010. PMC 1847610. PMID 17222505.
  26. ^ Otto C, Rohde-Schulz B, Schwarz G, Fuchs I, Klewer M, Brittain D, Langer G, Bader B, Prelle K, Nubbemeyer R, Fritzemeier KH (Oct 2008). "G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol". Endocrinology. 149 (10): 4846–56. doi:10.1210/en.2008-0269. PMID 18566127.
  27. ^ Harris HA, Albert LM, Leathurby Y, Malamas MS, Mewshaw RE, Miller CP, Kharode YP, Marzolf J, Komm BS, Winneker RC, Frail DE, Henderson RA, Zhu Y, Keith JC (Oct 2003). "Evaluation of an estrogen receptor-beta agonist in animal models of human disease". Endocrinology. 144 (10): 4241–9. doi:10.1210/en.2003-0550. PMID 14500559.
  28. ^ Clemons M, Danson S, Howell A (Aug 2002). "Tamoxifen ("Nolvadex"): a review". Cancer Treatment Reviews. 28 (4): 165–80. doi:10.1016/s0305-7372(02)00036-1. PMID 12363457.
  29. ^ Fabian CJ, Kimler BF (Mar 2005). "Selective estrogen-receptor modulators for primary prevention of breast cancer". Journal of Clinical Oncology. 23 (8): 1644–55. doi:10.1200/JCO.2005.11.005. PMID 15755972.
  30. ^ Oesterreich S, Davidson NE (Dec 2013). "The search for ESR1 mutations in breast cancer". Nature Genetics. 45 (12): 1415–6. doi:10.1038/ng.2831. PMC 4934882. PMID 24270445.
  31. ^ Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. (Sep 2013). "Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts". Cell Reports. 4 (6): 1116–30. doi:10.1016/j.celrep.2013.08.022. PMC 3881975. PMID 24055055.
  32. ^ Darabi M, Ani M, Panjehpour M, Rabbani M, Movahedian A, Zarean E (2011). "Effect of estrogen receptor β A1730G polymorphism on ABCA1 gene expression response to postmenopausal hormone replacement therapy". Genetic Testing and Molecular Biomarkers. 15 (1–2): 11–5. doi:10.1089/gtmb.2010.0106. PMID 21117950.
  33. ^ Hewitt KN, Boon WC, Murata Y, Jones ME, Simpson ER (Sep 2003). "The aromatase knockout mouse presents with a sexually dimorphic disruption to cholesterol homeostasis". Endocrinology. 144 (9): 3895–903. doi:10.1210/en.2003-0244. PMID 12933663.
  34. ^ Danilovich N, Babu PS, Xing W, Gerdes M, Krishnamurthy H, Sairam MR (Nov 2000). "Estrogen deficiency, obesity, and skeletal abnormalities in follicle-stimulating hormone receptor knockout (FORKO) female mice". Endocrinology. 141 (11): 4295–308. doi:10.1210/en.141.11.4295. PMID 11089565.
  35. ^ Ohlsson C, Hellberg N, Parini P, Vidal O, Bohlooly-Y M, Bohlooly M, Rudling M, Lindberg MK, Warner M, Angelin B, Gustafsson JA (Nov 2000). "Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice". Biochemical and Biophysical Research Communications. 278 (3): 640–5. doi:10.1006/bbrc.2000.3827. PMID 11095962.
  36. ^ Jensen EV, Jordan VC (Jun 2003). "The estrogen receptor: a model for molecular medicine" (abstract). Clinical Cancer Research. 9 (6): 1980–9. PMID 12796359.
  37. ^ Jensen E (2011). "A conversation with Elwood Jensen. Interview by David D. Moore". Annual Review of Physiology. 74: 1–11. doi:10.1146/annurev-physiol-020911-153327. PMID 21888507.
  38. ^ David Bracey, 2004 "UC Scientist Wins 'American Nobel' Research Award." University of Cincinnati press release.
  39. ^ Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (Jun 1996). "Cloning of a novel receptor expressed in rat prostate and ovary". Proceedings of the National Academy of Sciences of the United States of America. 93 (12): 5925–30. doi:10.1073/pnas.93.12.5925. PMC 39164. PMID 8650195.

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Oestrogen receptor Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001292

Steroid or nuclear hormone receptors (NRs) constitute an important superfamily of transcription regulators that are involved in widely diverse physiological functions, including control of embryonic development, cell differentiation and homeostasis. Members of the superfamily include the steroid hormone receptors and receptors for thyroid hormone, retinoids, 1,25-dihydroxy-vitamin D3 and a variety of other ligands [ PUBMED:14747695 ]. The proteins function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner [ PUBMED:7899080 , PUBMED:8165128 ]. In addition to C-terminal ligand-binding domains, these nuclear receptors contain a highly-conserved, N-terminal zinc-finger that mediates specific binding to target DNA sequences, termed ligand-responsive elements. In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity.

NRs are extremely important in medical research, a large number of them being implicated in diseases such as cancer, diabetes, hormone resistance syndromes, etc. While several NRs act as ligand-inducible transcription factors, many do not yet have a defined ligand and are accordingly termed 'orphan' receptors. During the last decade, more than 300 NRs have been described, many of which are orphans, which cannot easily be named due to current nomenclature confusions in the literature. However, a new system has recently been introduced in an attempt to rationalise the increasingly complex set of names used to describe superfamily members.

The oestrogen receptors (ERs) are steroid or nuclear hormone receptors that act as transcription regulators involved in diverse physiological functions. Oestrogen receptors function as dimeric molecules in nuclei to regulate the transcription of target genes in a ligand-responsive manner. The ER consists of three functional and structural domains: an N-terminal modulatory domain, a highly conserved DNA-binding domain that recognises specific sequences ( INTERPRO ), and a C-terminal ligand-binding domain ( INTERPRO ).

The N-terminal modulatory domain spans the first 180 residues and contains the activation function 1 (AF1) region. Nuclear receptors differ considerably with respect to AF1 activity and regulation, as it is a poorly conserved region [ PUBMED:15831449 ]. There is another activation function region, namely AF2, which resides in the C-terminal end of the ligand-binding domain. Transcription activation is facilitated by both AF1 and AF2, which appear to act synergistically in the ER complex [ PUBMED:15728727 , PUBMED:14612550 ]. For example, the ER can recruit TIF2 (transcription intermediary factor 2) via the AF1 and AF2 regions, whose synergistic action results in the activation of transcription.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View 
HTML View  View           
PP/heatmap 1 View           

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: IPR001292
Previous IDs: none
Type: Family
Sequence Ontology: SO:0100021
Author: Mian N , Bateman A
Number in seed: 7
Number in full: 438
Average length of the domain: 128.20 aa
Average identity of full alignment: 46 %
Average coverage of the sequence by the domain: 24.86 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 57096847 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.8 20.8
Trusted cut-off 20.8 23.9
Noise cut-off 20.7 20.7
Model length: 138
Family (HMM) version: 17
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Oest_recep domain has been found. There are 4 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...