Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
132  structures 627  species 0  interactions 1525  sequences 9  architectures

Family: NHase_beta (PF02211)

Summary: Nitrile hydratase beta subunit

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Nitrile hydratase". More...

Nitrile hydratase Edit Wikipedia article

nitrile hydratase
EC number4.2.1.84
CAS number82391-37-5
IntEnzIntEnz view
ExPASyNiceZyme view
MetaCycmetabolic pathway
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO

In enzymology, nitrile hydratases (NHases; EC are mononuclear iron or non-corrinoid cobalt enzymes that catalyse the hydration of diverse nitriles to their corresponding amides

R-C≡N + H2O → R-C(O)NH2

Metal cofactor

In biochemistry, cobalt is in general found in a corrin ring, such as in vitamin B12. Nitrile hydratase is one of the rare enzyme types that use cobalt in a non-corrinoid manner. The mechanism by which the cobalt is transported to NHase without causing toxicity is unclear, although a cobalt permease has been identified, which transports cobalt across the cell membrane. The identity of the metal in the active site of a nitrile hydratase can be predicted by analysis of the sequence data of the alpha subunit in the region where the metal is bound. The presence of the amino acid sequence VCTLC indicates a Co-centred NHase and the presence of VCSLC indicates Fe-centred NHase.

Metabolic pathway

Nitrile hydratase and amidase are two hydrating and hydrolytic enzymes responsible for the sequential metabolism of nitriles in bacteria that are capable of utilising nitriles as their sole source of nitrogen and carbon, and in concert act as an alternative to nitrilase activity, which performs nitrile hydrolysis without formation of an intermediate primary amide. A sequence in genome of the choanoflagellate Monosiga brevicollis was suggested to encode for a nitrile hydratase.[1] The M. brevicollis gene consisted of both the alpha and beta subunits fused into a single gene. Similar nitrile hydratase genes consisting of a fusion of the beta and alpha subunits have since been identified in several eukaryotic supergroups, suggesting that such nitrile hydratases were present in the last common ancestor of all eukaryotes.[2]

Industrial applications

NHases have been efficiently used for the industrial production of acrylamide from acrylonitrile[3] on a scale of 600 000 tons per annum,[4] and for removal of nitriles from wastewater. Photosensitive NHases intrinsically possess nitric oxide (NO) bound to the iron centre, and its photodissociation activates the enzyme. Nicotinamide is produced industrially[3] by the hydrolysis of 3-cyanopyridine catalysed by the nitrile hydratase from Rhodococcus rhodochrous J1,[5][6] producing 3500 tons per annum of nicotinamide for use in animal feed.[4]


Structure of nitrile hydratase.[7]

NHases are composed of two types of subunits, α and β, which are not related in amino acid sequence. NHases exist as αβ dimers or α2β2 tetramers and bind one metal atom per αβ unit. The 3-D structures of a number of NHases have been determined. The α subunit consists of a long extended N-terminal "arm", containing two α-helices, and a C-terminal domain with an unusual four-layered structure (α-β-β-α). The β subunit consists of a long N-terminal loop that wraps around the α subunit, a helical domain that packs with N-terminal domain of the α subunit, and a C-terminal domain consisting of a β-roll and one short helix.

Nitrile hydratase, alpha chain
Nitrile hydratase beta subunit


An assembly pathway for nitrile hydratase was first proposed when gel filtration experiments found that the complex exists in both αβ and α2β2 forms.[8] In vitro experiments using mass spectrometry further revealed that the α and β subunits first assemble to form the αβ dimer. The dimers can then subsequently interact to form a tetramer.[9]


The metal centre is located in the central cavity at the interface between two subunits. All protein ligands to the metal atom are provided by the α subunit. The protein ligands to the iron are the sidechains of the three cysteine (Cys) residues and two mainchain amide nitrogens. The metal ion is octahedrally coordinated, with the protein ligands at the five vertices of an octahedron. The sixth position, accessible to the active site cleft, is occupied either by NO or by a solvent-exchangeable ligand (hydroxide or water). The two Cys residues coordinated to the metal are post-translationally modified to Cys-sulfinic (Cys-SO2H) and -sulfenic (Cys-SOH) acids.

Quantum chemical studies predicted that the Cys-SOH residue might play a role as either a base (activating a nucleophilic water molecule)[10] or as a nucleophile.[11] Subsequently, the functional role of the SOH center as nucleophile has obtained experimental support.[12]


  1. ^ Foerstner KU, Doerks T, Muller J, Raes J, Bork P (2008). Hannenhalli S (ed.). "A nitrile hydratase in the eukaryote Monosiga brevicollis". PLoS ONE. 3 (12): e3976. Bibcode:2008PLoSO...3.3976F. doi:10.1371/journal.pone.0003976. PMC 2603476. PMID 19096720.
  2. ^ Marron AO, Akam M, Walker G (2012). Stiller J (ed.). "Nitrile Hydratase Genes Are Present in Multiple Eukaryotic Supergroups". PLoS ONE. 7 (4): e32867. Bibcode:2012PLoSO...732867M. doi:10.1371/journal.pone.0032867. PMC 3323583. PMID 22505998.
  3. ^ a b Schmidberger, J. W.; Hepworth, L. J.; Green, A. P.; Flitsch, S. L. (2015). "Enzymatic Synthesis of Amides". In Faber, Kurt; Fessner, Wolf-Dieter; Turner, Nicholas J. (eds.). Biocatalysis in Organic Synthesis 1. Science of Synthesis. Georg Thieme Verlag. pp. 329–372.
  4. ^ a b Asano, Y. (2015). "Hydrolysis of Nitriles to Amides". In Faber, Kurt; Fessner, Wolf-Dieter; Turner, Nicholas J. (eds.). Biocatalysis in Organic Synthesis 1. Science of Synthesis. Georg Thieme Verlag. pp. 255–276.
  5. ^ Nagasawa, Toru; Mathew, Caluwadewa Deepal; Mauger, Jacques; Yamada, Hideaki (1988). "Nitrile Hydratase-Catalyzed Production of Nicotinamide from 3-Cyanopyridine in Rhodococcus rhodochrous J1". Appl. Environ. Microbiol. 54 (7): 1766–1769.
  6. ^ Hilterhaus, L.; Liese, A. (2007). "Building Blocks". In Ulber, Roland; Sell, Dieter (eds.). White Biotechnology. Advances in Biochemical Engineering/Biotechnology. Advances in Biochemical Engineering / Biotechnology. 105. Springer Science & Business Media. pp. 133–173. doi:10.1007/10_033. ISBN 9783540456957. PMID 17408083.
  7. ^ Nagashima S, Nakasako M, Dohmae N, et al. (May 1998). "Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms". Nat. Struct. Biol. 5 (5): 347–51. doi:10.1038/nsb0598-347. PMID 9586994.
  8. ^ Payne, MS; Wu, S; Fallon, RD; Tudor, G; Stieglitz, B; Turner, IM; Nelson, MJ (May 1997). "A stereoselective cobalt-containing nitrile hydratase". Biochemistry. 36 (18): 5447–54. doi:10.1021/bi962794t. PMID 9154927.
  9. ^ Marsh JA, Hernández H, Hall Z, Ahnert SE, Perica T, Robinson CV, Teichmann SA (Apr 2013). "Protein complexes are under evolutionary selection to assemble via ordered pathways". Cell. 153 (2): 461–470. doi:10.1016/j.cell.2013.02.044. PMC 4009401. PMID 23582331.
  10. ^ Hopmann, KH; Guo JD, Himo F (2007). "Theoretical Investigation of the First-Shell Mechanism of Nitrile Hydratase". Inorg. Chem. 46 (12): 4850–4856. doi:10.1021/ic061894c. PMID 17497847.
  11. ^ Hopmann, KH; Himo F (March 2008). "Theoretical Investigation of the Second-Shell Mechanism of Nitrile Hydratase". European Journal of Inorganic Chemistry. 2008 (9): 1406–1412. doi:10.1002/ejic.200701137.
  12. ^ Salette, M; Wu R, Sanishvili R, Liu D, Holz RC (2014). "The Active Site Sulfenic Acid Ligand in Nitrile Hydratases can Function as a Nucleophile". JACS. 136 (4): 1186–1189. doi:10.1021/ja410462j. PMC 3968781. PMID 24383915.CS1 maint: multiple names: authors list (link)

Further reading

  • Prasad, S; Bhalla, TC (May 2010). "Nitrile hydratases (NHases): At the interface of academia and industry". Biotechnology Advances. 28 (6): 725–41. doi:10.1016/j.biotechadv.2010.05.020. PMID 20685247.
  • Rzeznicka, K; Schätzle, S; Böttcher, D; Klein, J; Bornscheuer, UT (Aug 2009). "Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation". Appl Microbiol Biotechnol. 85 (5): 1417–25. doi:10.1007/s00253-009-2153-y. PMID 19662400.
  • Song, L; Wang, M; Yang, X; Qian, S (Jun 2007). "Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus sp. AJ270". Biotechnol J. 2 (6): 717–24. doi:10.1002/biot.200600215. PMID 17330219.
  • Miyanaga, A; Fushinobu, S; Ito, K; Shoun, H; Wakagi, T (Jan 2004). "Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding". Eur J Biochem. 271 (2): 429–38. doi:10.1046/j.1432-1033.2003.03943.x. PMID 14717710.
  • Hann, EC; Eisenberg, A; Fager, SK; Perkins, NE; Gallagher, FG; Cooper, SM; Gavagan, JE; Stieglitz, B; Hennessey, SM; DiCosimo, R (October 1999). "5-Cyanovaleramide production using immobilized Pseudomonas chlororaphis B23". Bioorg Med Chem. 7 (10): 2239–45. doi:10.1016/S0968-0896(99)00157-1. PMID 10579532.

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Nitrile hydratase beta subunit Provide feedback

Nitrile hydratases EC: are unusual metalloenzymes that catalyse the hydration of nitriles to their corresponding amides. They are used as biocatalysts in acrylamide production, one of the few commercial scale bioprocesses, as well as in environmental remediation for the removal of nitriles from waste streams. Nitrile hydratases are composed of two subunits, alpha and beta, and they contain one iron atom per alpha beta unit [1].

Literature references

  1. Huang W, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y; , Structure 1997;5:691-699.: Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. PUBMED:9195885 EPMC:9195885

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR024690

Nitrile hydratases ( EC ) are unusual metalloenzymes that catalyse the hydration of nitriles to their corresponding amides. They are used as biocatalysts in acrylamide production, one of the few commercial scale bioprocesses, as well as in environmental remediation for the removal of nitriles from waste streams. Nitrile hydratases are composed of two subunits, alpha and beta, and they contain one iron atom per alpha beta unit [ PUBMED:9195885 ].

This entry represents the structural domain of nitrile hydratase beta subunit which contains irregular array of helices in the N-terminal extension.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan ETAP (CL0610), which has the following description:

According to SCOP the domains in this superfamily have an SH3 like barrel fold.

The clan contains the following 4 members:

DHFR_2 FeThRed_A NHase_beta PSI_PsaE


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets and the UniProtKB sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View 
HTML View  View           
PP/heatmap 1 View           

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_5347 (release 5.2)
Previous IDs: none
Type: Domain
Sequence Ontology: SO:0000417
Author: Bateman A
Number in seed: 40
Number in full: 1525
Average length of the domain: 151.10 aa
Average identity of full alignment: 23 %
Average coverage of the sequence by the domain: 92.77 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 57096847 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 22.2 22.2
Trusted cut-off 22.2 22.3
Noise cut-off 22.1 22.0
Model length: 219
Family (HMM) version: 17
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the NHase_beta domain has been found. There are 132 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...