Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
1  structure 5796  species 0  interactions 7198  sequences 23  architectures

Family: MurJ (PF03023)

Summary: Lipid II flippase MurJ

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "MOP flippase ". More...

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Lipid II flippase MurJ Provide feedback

Peptidoglycan synthesis (PG) biosynthesis involves the formation of peptidoglycan precursor lipid II (undecaprenyl-pyrophosphate-linked N-acetyl glucosamine-N-acetyl muramic acid-pentapeptide) on the cytosolic face of the cell membrane. Lipid II is then translocated across the membrane and its glycopeptide moiety becomes incorporated into the growing cell wall mesh. MviN, renamed as MurJ, is a lipid II flippase essential for cell wall peptidoglycan synthesis [1, 2]. MurJ belongs to the MVF (mouse virulence factor) family of MOP superfamily transporters, which also includes the MATE (multidrug and toxic compound extrusion) transporter and eukaryotic OLF (oligosaccharidyl-lipid flippase) families. In addition to the canonical MOP transporter core consisting of 12 transmembrane helices (TMs), MurJ has two additional C-terminal TMs (13 and 14) of unknown function. Structural analysis indicates that the N lobe (TMs 1–6) and C lobe (TMs 7–14) are arranged in an inward-facing N-shape conformation, rather than the outward-facing V-shape conformation observed in all existing MATE transporter structures. Furthermore, a hydrophobic groove is formed by two C-terminal transmembrane helices, which leads into a large central cavity that is mostly cationic. Mutagenesis studies, revealed a solvent-exposed cavity that is essential for function. Mutation of conserved residues (Ser17, Arg18, Arg24, Arg52, and Arg255) at the proximal site failed to complement MurJ function, consistent with the idea that these residues are important for recognizing the diphosphate and/or sugar moieties of lipid II. It has also been suggested that the chloride ion in the central cavity and a zinc ion at the beginning of TM 7 might be functionally important [3].

Literature references

  1. Ruiz N;, Proc Natl Acad Sci U S A. 2008;105:15553-15557.: Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. PUBMED:18832143 EPMC:18832143

  2. Mohamed YF, Valvano MA;, Glycobiology. 2014;24:564-576.: A Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability. PUBMED:24688094 EPMC:24688094

  3. Kuk AC, Mashalidis EH, Lee SY;, Nat Struct Mol Biol. 2016; [Epub ahead of print]: Crystal structure of the MOP flippase MurJ in an inward-facing conformation. PUBMED:28024149 EPMC:28024149


Internal database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR004268

Peptidoglycan synthesis (PG) biosynthesis involves the formation of peptidoglycan precursor lipid II (undecaprenyl-pyrophosphate-linked N-acetyl glucosamine-N-acetyl muramic acid-pentapeptide) on the cytosolic face of the cell membrane. Lipid II is then translocated across the membrane and its glycopeptide moiety becomes incorporated into the growing cell wall mesh.

MviN, renamed as MurJ, is a lipid II flippase essential for cell wall peptidoglycan synthesis [PUBMED:18832143, PUBMED:24688094]. Unlike most MviN proteins, the mycobacterial MviN orthologue possess an extended C-terminal region that contains an intracellular pseudo-kinase domain and an extracellular domain resembling carbohydrate-binding proteins [PUBMED:22275220].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan MviN_MATE (CL0222), which has the following description:

This superfamily consists of a variety of integral membrane protein families. The MATE family are known to be transporters. Other proteins have been implicated in virulence and polysaccharide biosynthesis.

The clan contains the following 7 members:

ANKH MatE MurJ Polysacc_synt Polysacc_synt_3 Polysacc_synt_C Rft-1

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(13)
Full
(7198)
Representative proteomes UniProt
(20629)
NCBI
(49154)
Meta
(3955)
RP15
(1950)
RP35
(4920)
RP55
(7317)
RP75
(10295)
Jalview View  View  View  View  View  View  View  View  View 
HTML View                 
PP/heatmap 1                

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(13)
Full
(7198)
Representative proteomes UniProt
(20629)
NCBI
(49154)
Meta
(3955)
RP15
(1950)
RP35
(4920)
RP55
(7317)
RP75
(10295)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(13)
Full
(7198)
Representative proteomes UniProt
(20629)
NCBI
(49154)
Meta
(3955)
RP15
(1950)
RP35
(4920)
RP55
(7317)
RP75
(10295)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_1348 (release 6.4)
Previous IDs: MVIN;
Type: Family
Sequence Ontology: SO:0100021
Author: Griffiths-Jones SR , Studholme DJ , El-Gebali S
Number in seed: 13
Number in full: 7198
Average length of the domain: 444.80 aa
Average identity of full alignment: 24 %
Average coverage of the sequence by the domain: 79.94 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 27.4 27.4
Trusted cut-off 27.4 27.4
Noise cut-off 27.3 27.3
Model length: 452
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the MurJ domain has been found. There are 1 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...