Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
1  structure 113  species 0  interactions 518  sequences 14  architectures

Family: Perilipin (PF03036)

Summary: Perilipin family

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Perilipin". More...

Perilipin Edit Wikipedia article

Aliases PLIN1, FPLD4, PERI, PLIN, perilipin 1
External IDs OMIM: 170290 MGI: 1890505 HomoloGene: 2001 GeneCards: PLIN1
RNA expression pattern
PBB GE PLIN 205913 at tn.png
More reference expression data
Species Human Mouse
RefSeq (mRNA)



RefSeq (protein)



Location (UCSC) Chr 15: 89.66 – 89.68 Mb Chr 7: 79.72 – 79.73 Mb
PubMed search [1] [2]
View/Edit Human View/Edit Mouse

Perilipin, also known as lipid droplet-associated protein or PLIN, is a protein that, in humans, is encoded by the PLIN gene.[3] The perilipins are a family of proteins that associate with the surface of lipid droplets. Phosphorylation of perilipin is essential for the mobilization of fats in adipose tissue.[4]


Perilipin is a protein that coats lipid droplets in adipocytes,[5] the fat-storing cells in adipose tissue. Perilipin acts as a protective coating from the body’s natural lipases, such as hormone-sensitive lipase,[6] which break triglycerides into glycerol and free fatty acids for use in metabolism, a process called lipolysis.[4] In humans, perilipin is expressed in three different isoforms, A, B, and C, and perilipin A is the most abundant protein associated with the adipocyte lipid droplets.[7]

Perilipin is hyperphosphorylated by PKA following β-adrenergic receptor activation.[4] Phosphorylated perilipin changes conformation, exposing the stored lipids to hormone-sensitive lipase-mediated lipolysis. Although PKA also phosphorylates hormone-sensitive lipase, which can increase its activity, the more than 50-fold increase in fat mobilization (triggered by epinephrine) is primarily due to perilipin phosphorylation.

Clinical significance

Perilipin is an important regulator of lipid storage.[4] Perilipin expression is elevated in obese animals and humans. Perilipin-null mice eat more food than wild-type mice, but gain 1/3 less fat than wild-type mice on the same diet; perilipin-null mice are thinner, with more lean muscle mass.[8] Perilipin-null mice also exhibit enhanced leptin production and a greater tendency to develop insulin resistance than wild-type mice.

Polymorphisms in the human perilipin (PLIN) gene have been associated with variance in body-weight regulation and may be a genetic influence on obesity risk in humans.[9] In particular, variants 13041A>G and 14995A>T have been associated with increased risk of obesity in women and 11482G>A has been associated with decreased perilipin expression and increased lipolysis in women.[10][11]

Perilipin family of proteins

Symbol Perilipin
Pfam PF03036
InterPro IPR004279

Perilipin is part of a gene family with five currently-known members. In vertebrates, closely related genes include adipophilin (also known as adipose differentiation-related protein), TIP47, and LSDP5 (also called MLDP and OXPAT). Insects express related proteins, LSD1 and LSD2, in fat bodies.[7]


  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ "Entrez Gene: PLIN perilipin". 
  4. ^ a b c d Mobilization and Cellular Uptake of Stored Fats (with Animation)
  5. ^ Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C (June 1991). "Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets". J. Biol. Chem. 266 (17): 11341–6. PMID 2040638. 
  6. ^ Wong K (2000-11-29). "Making Fat-proof Mice". Scientific American. Retrieved 2009-05-22. 
  7. ^ a b Brasaemle DL, Subramanian V, Garcia A, Marcinkiewicz A, Rothenberg A (June 2009). "Perilipin A and the control of triacylglycerol metabolism". Mol. Cell. Biochem. 326 (1-2): 15–21. doi:10.1007/s11010-008-9998-8. PMID 19116774. 
  8. ^, 19 June 2001, Highfield, Roger (2000-11-29). "Couch potato mice discover the lazy way to stay slim". The Daily Telegraph. London. Retrieved 2008-09-03. 
  9. ^ Soenen S, Mariman EC, Vogels N, Bouwman FG, den Hoed M, Brown L, Westerterp-Plantenga MS (March 2009). "Relationship between perilipin gene polymorphisms and body weight and body composition during weight loss and weight maintenance". Physiol. Behav. 96 (4-5): 723–8. doi:10.1016/j.physbeh.2009.01.011. PMID 19385027. 
  10. ^ Qi L, Shen H, Larson I, Schaefer EJ, Greenberg AS, Tregouet DA, Corella D, Ordovas JM (November 2004). "Gender-specific association of a perilipin gene haplotype with obesity risk in a white population". Obes. Res. 12 (11): 1758–65. doi:10.1038/oby.2004.218. PMID 15601970. 
  11. ^ Corella D, Qi L, Sorlí JV, Godoy D, Portolés O, Coltell O, Greenberg AS, Ordovas JM (September 2005). "Obese subjects carrying the 11482G>A polymorphism at the perilipin locus are resistant to weight loss after dietary energy restriction". J. Clin. Endocrinol. Metab. 90 (9): 5121–6. doi:10.1210/jc.2005-0576. PMID 15985482. 

Further reading

  • Brasaemle DL (December 2007). "Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis". J. Lipid Res. 48 (12): 2547–59. doi:10.1194/jlr.R700014-JLR200. PMID 17878492. 
  • Tai ES, Ordovas JM (2007). "The role of perilipin in human obesity and insulin resistance.". Curr. Opin. Lipidol. 18 (2): 152–6. doi:10.1097/MOL.0b013e328086aeab. PMID 17353663. 
  • Nishiu J, Tanaka T, Nakamura Y (1998). "Isolation and chromosomal mapping of the human homolog of perilipin (PLIN), a rat adipose tissue-specific gene, by differential display method.". Genomics. 48 (2): 254–7. doi:10.1006/geno.1997.5179. PMID 9521880. 
  • Souza SC, Muliro KV, Liscum L, et al. (2002). "Modulation of hormone-sensitive lipase and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system.". J. Biol. Chem. 277 (10): 8267–72. doi:10.1074/jbc.M108329200. PMID 11751901. 
  • Hagström-Toft E, Qvisth V, Nennesmo I, et al. (2002). "Marked heterogeneity of human skeletal muscle lipolysis at rest.". Diabetes. 51 (12): 3376–83. doi:10.2337/diabetes.51.12.3376. PMID 12453889. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241Freely accessible. PMID 12477932. 
  • Mottagui-Tabar S, Rydén M, Löfgren P, et al. (2004). "Evidence for an important role of perilipin in the regulation of human adipocyte lipolysis.". Diabetologia. 46 (6): 789–97. doi:10.1007/s00125-003-1112-x. PMID 12802495. 
  • Wang Y, Sullivan S, Trujillo M, et al. (2004). "Perilipin expression in human adipose tissues: effects of severe obesity, gender, and depot.". Obes. Res. 11 (8): 930–6. doi:10.1038/oby.2003.128. PMID 12917496. 
  • Zhang HH, Souza SC, Muliro KV, et al. (2004). "Lipase-selective functional domains of perilipin A differentially regulate constitutive and protein kinase A-stimulated lipolysis.". J. Biol. Chem. 278 (51): 51535–42. doi:10.1074/jbc.M309591200. PMID 14527948. 
  • Kern PA, Di Gregorio G, Lu T, et al. (2004). "Perilipin expression in human adipose tissue is elevated with obesity.". J. Clin. Endocrinol. Metab. 89 (3): 1352–8. doi:10.1210/jc.2003-031388. PMID 15001633. 
  • Arvidsson E, Blomqvist L, Rydén M (2004). "Depot-specific differences in perilipin mRNA but not protein expression in obesity.". J. Intern. Med. 255 (5): 595–601. doi:10.1111/j.1365-2796.2004.01314.x. PMID 15078502. 
  • Dalen KT, Schoonjans K, Ulven SM, et al. (2004). "Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma.". Diabetes. 53 (5): 1243–52. doi:10.2337/diabetes.53.5.1243. PMID 15111493. 
  • Qi L, Corella D, Sorlí JV, et al. (2005). "Genetic variation at the perilipin (PLIN) locus is associated with obesity-related phenotypes in White women.". Clin. Genet. 66 (4): 299–310. doi:10.1111/j.1399-0004.2004.00309.x. PMID 15355432. 
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928Freely accessible. PMID 15489334. 
  • Yan W, Chen S, Huang J, et al. (2005). "Polymorphisms in PLIN and hypertension combined with obesity and lipid profiles in Han Chinese.". Obes. Res. 12 (11): 1733–7. doi:10.1038/oby.2004.214. PMID 15601966. 
  • Qi L, Shen H, Larson I, et al. (2005). "Gender-specific association of a perilipin gene haplotype with obesity risk in a white population.". Obes. Res. 12 (11): 1758–65. doi:10.1038/oby.2004.218. PMID 15601970. 
  • Qi L, Tai ES, Tan CE, et al. (2005). "Intragenic linkage disequilibrium structure of the human perilipin gene (PLIN) and haplotype association with increased obesity risk in a multiethnic Asian population.". J. Mol. Med. 83 (6): 448–56. doi:10.1007/s00109-004-0630-4. PMID 15770500. 
  • Forcheron F, Legedz L, Chinetti G, et al. (2005). "Genes of cholesterol metabolism in human atheroma: overexpression of perilipin and genes promoting cholesterol storage and repression of ABCA1 expression.". Arterioscler. Thromb. Vasc. Biol. 25 (8): 1711–7. doi:10.1161/01.ATV.0000174123.19103.52. PMID 15961705. 
  • Corella D, Qi L, Sorlí JV, et al. (2005). "Obese subjects carrying the 11482G>A polymorphism at the perilipin locus are resistant to weight loss after dietary energy restriction.". J. Clin. Endocrinol. Metab. 90 (9): 5121–6. doi:10.1210/jc.2005-0576. PMID 15985482. 
  • Moore HP, Silver RB, Mottillo EP, et al. (2006). "Perilipin targets a novel pool of lipid droplets for lipolytic attack by hormone-sensitive lipase.". J. Biol. Chem. 280 (52): 43109–20. doi:10.1074/jbc.M506336200. PMID 16243839. 
  • Shimizu M, Akter MH, Emi Y, et al. (2007). "Peroxisome proliferator-activated receptor subtypes differentially cooperate with other transcription factors in selective transactivation of the perilipin/PEX11 alpha gene pair.". J. Biochem. 139 (3): 563–73. doi:10.1093/jb/mvj053. PMID 16567422. 

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Perilipin family Provide feedback

The perilipin family includes lipid droplet-associated protein (perilipin) and adipose differentiation-related protein (adipophilin).

Internal database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR004279

The perilipin family includes lipid droplet-associated protein (perilipin) and adipose differentiation-related protein (adipophilin). Perilipin is a modulator of adipocyte lipid metabolism and adipophilinis involved in the development and maintenance of adipose tissue. Other proteins belong to this group include TIP47, a cargo selection device for mannose 6-phosphate receptor trafficking [PUBMED:9590177].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View  View   
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_1154 (release 6.4)
Previous IDs: perilipin;
Type: Family
Author: Griffiths-Jones SR
Number in seed: 50
Number in full: 518
Average length of the domain: 273.50 aa
Average identity of full alignment: 25 %
Average coverage of the sequence by the domain: 63.66 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 17690987 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 33.2 33.2
Trusted cut-off 33.2 33.2
Noise cut-off 32.9 33.1
Model length: 391
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Perilipin domain has been found. There are 1 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...