Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
545  structures 7  species 1  interaction 578  sequences 20  architectures

Family: TAL_effector (PF03377)

Summary: TAL effector repeat

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "TAL effector". More...

TAL effector Edit Wikipedia article

TAL effector, Xanthomonas oryzae.

TAL (transcription activator-like) effectors (often referred to as TALEs, but not to be confused with the three amino acid loop extension homeobox class of proteins) are proteins secreted by Xanthomonas bacteria via their type III secretion system when they infect various plant species. These proteins can bind promoter sequences in the host plant and activate the expression of plant genes that aid bacterial infection. They recognize plant DNA sequences through a central repeat domain consisting of a variable number of ~34 amino acid repeats. There appears to be a one-to-one correspondence between the identity of two critical amino acids in each repeat and each DNA base in the target sequence. These proteins are interesting to researchers both for their role in disease of important crop species and the relative ease of retargeting them to bind new DNA sequences. Similar proteins can be found in the pathogenic bacterium Ralstonia solanacearum[1][2] and Burkholderia rhizoxinica.,[3] as well as yet unidentified marine microorganisms.[4] The term TALE-likes is used to refer to the putative protein family encompassing the TALEs and these related proteins.

Function in plant pathogenesis

Xanthomonas are Gram-negative bacteria that can infect a wide variety of plant species including pepper, rice, citrus, cotton, tomato, and soybeans.[5] Some types of Xanthomonas cause localized leaf spot or leaf streak while others spread systemically and cause black rot or leaf blight disease. They inject a number of effector proteins, including TAL effectors, into the plant via their type III secretion system. TAL effectors have several motifs normally associated with eukaryotes including multiple nuclear localization signals and an acidic activation domain. When injected into plants, these proteins can enter the nucleus of the plant cell, bind plant promoter sequences, and activate transcription of plant genes that aid in bacterial infection.[5] Plants have developed a defense mechanism against type III effectors that includes R (resistance) genes triggered by these effectors. Some of these R genes appear to have evolved to contain TAL-effector binding sites similar to site in the intended target gene. This competition between pathogenic bacteria and the host plant has been hypothesized to account for the apparently malleable nature of the TAL effector DNA binding domain.[6]

DNA recognition

The most distinctive characteristic of TAL effectors is a central repeat domain containing between 1.5 and 33.5 repeats that are usually 34 residues in length (the C-terminal repeat is generally shorter and referred to as a “half repeat”).[5] A typical repeat sequence is LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHG, but the residues at the 12th and 13th positions are hypervariable (these two amino acids are also known as the repeat variable diresidue or RVD). Two separate groups have shown that there is a simple relationship between the identity of these two residues in sequential repeats and sequential DNA bases in the TAL effector’s target site.[7][8] The first group, headed by Adam Bogdanove, broke this code computationally by searching for patterns in protein sequence alignments and DNA sequences of target promoters. The second group deduced the code through molecular analysis of the TAL effector AvrBs3 and its target DNA sequence in the promoter of a pepper gene activated by AvrBs3.[6] The experimentally validated code between RVD sequence and target DNA base[8] can be expressed as NI = A, HD = C, NG = T, NN = R (G or A), and NS = N (A, C, G, or T). Further studies have shown that the RVD code NG (but not HD) can target 5-methyl-C.[9] Also, the RVD NK can target G,[10][11] although TAL effector nucleases (TALEN) that exclusively use NK instead of NN to target G can be less active.[12] The crystal structure of a TAL effector bound to DNA indicates that each repeat comprises two alpha helices and a short RVD-containing loop where the second residue of the RVD makes sequence-specific DNA contacts while the first residue of the RVD stabilizes the RVD-containing loop.[13][14] Target sites of TAL effectors also tend to include a thymine flanking the 5’ base targeted by the first repeat; this appears to be due to a contact between this T and a conserved tryptophan in the region N-terminal of the central repeat domain.[13] However, this "zero" position does not always contain a thymine, as some scaffolds are more permissive.[15]

Engineering TAL effectors

This simple correspondence between amino acids in TAL effectors and DNA bases in their target sites makes them useful for protein engineering applications. Numerous groups have designed artificial TAL effectors capable of recognizing new DNA sequences in a variety of experimental systems.[8][10][11][16][17][18] Such engineered TAL effectors have been used to create artificial transcription factors that can be used to target and activate or repress endogenous genes in tomato,[10] Arabidopsis thaliana,[10] and human cells.[11][17][19][20]

Genetic constructs to encode TAL effector-based proteins can be made using either conventional gene synthesis or modular assembly.[17][20][21][22][23][24][25][26] A plasmid kit for assembling custom TALEN® and other TAL effector constructs is available through the public, not-for-profit repository Addgene. Webpages providing access to public software, protocols, and other resources for TAL effector-DNA targeting applications include the TAL Effector-Nucleotide Targeter and

Target genes

TAL effectors can induce susceptibility genes that are members of the NODULIN3 (N3) gene family. These genes are essential for the development of the disease. In rice two genes,Os-8N3 and Os-11N3, are induced by TAL effectors. Os-8N3 is induced by PthXo1 and Os-11N3 is induced by PthXo3 and AvrXa7. Two hypotheses exist about possible functions for N3 proteins:

  • They are involved in copper transport, resulting in detoxification of the environment for bacteria. The reduction in copper level facilitates bacterial growth.
  • They are involved in glucose transport, facilitating glucose flow. This mechanism provides nutrients to bacteria and stimulates pathogen growth and virulence[citation needed]


Engineered TAL effectors can also be fused to the cleavage domain of FokI to create TAL effector nucleases (TALEN) or to meganucleases (nucleases with longer recognition sites) to create "megaTALs."[27] Such fusions share some properties with zinc finger nucleases and may be useful for genetic engineering and gene therapy applications.[28]

TALEN-based approaches are used in the emerging fields of gene editing and genome engineering. TALEN fusions show activity in a yeast-based assay,[16][29] at endogenous yeast genes,[21] in a plant reporter assay,[18] at an endogenous plant gene,[22] at endogenous zebrafish genes,[12][30] at an endogenous rat gene,[31] and at endogenous human genes.[11][22][32] The human HPRT1 gene has been targeted at detectable, but unquantified levels.[22] In addition, TALEN constructs containing the FokI cleavage domain fused to a smaller portion of the TAL effector still containing the DNA binding domain have been used to target the endogenous NTF3 and CCR5 genes in human cells with efficiencies of up to 25%.[11] TAL effector nucleases have also been used to engineer human embryonic stem cells and induced pluripotent stem cells (IPSCs)[32] and to knock out the endogenous ben-1 gene in C. elegans.[33]

See also


  1. ^ Heuer, H.; Yin, Y. -N.; Xue, Q. -Y.; Smalla, K.; Guo, J. -H. (2007). "Repeat Domain Diversity of avrBs3-Like Genes in Ralstonia solanacearum Strains and Association with Host Preferences in the Field". Applied and Environmental Microbiology. 73 (13): 4379–4384. doi:10.1128/AEM.00367-07. PMC 1932761Freely accessible. PMID 17468277. 
  2. ^ Lixin Li; Ahmed Atef; Agnieszka Piatek; Zahir Ali; Marek Piatek; Mustapha Aouida; Altanbadralt Sharakuu; Ali Mahjoub; Guangchao Wang; Suhail Khan; Nina V Fedoroff; Jian-Kang Zhu; Magdy M Mahfouz (July 2013). "Characterization and DNA-binding specificities of Ralstonia TAL-like effectors". Molecular plant. 6 (4): 1318–1330. doi:10.1093/mp/sst006. PMC 3716395Freely accessible. PMID 23300258. 
  3. ^ de Lange, Orlando; Christina Wolf; Jörn Dietze; Janett Elsaesser; Robert Morbitzer; Thomas Lahaye (2014). "Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain". Nucleic Acids Research. 42 (11): 7436–49. doi:10.1093/nar/gku329. PMC 4066763Freely accessible. PMID 24792163. 
  4. ^ de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas (19 October 2015). "DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats". Nucleic Acids Research. 43: gkv1053. doi:10.1093/nar/gkv1053. PMC 4787788Freely accessible. PMID 26481363. 
  5. ^ a b c Boch J, Bonas U (September 2010). "XanthomonasAvrBs3 Family-Type III Effectors: Discovery and Function". Annual Review of Phytopathology. 48: 419–36. doi:10.1146/annurev-phyto-080508-081936. PMID 19400638. 
  6. ^ a b Voytas DF, Joung JK (December 2009). "Plant science. DNA binding made easy". Science. 326 (5959): 1491–2. Bibcode:2009Sci...326.1491V. doi:10.1126/science.1183604. PMID 20007890. 
  7. ^ Moscou MJ, Bogdanove AJ (December 2009). "A simple cipher governs DNA recognition by TAL effectors". Science. 326 (5959): 1501. Bibcode:2009Sci...326.1501M. doi:10.1126/science.1178817. PMID 19933106. 
  8. ^ a b c Boch J, Scholze H, Schornack S, et al. (December 2009). "Breaking the code of DNA binding specificity of TAL-type III effectors". Science. 326 (5959): 1509–12. Bibcode:2009Sci...326.1509B. doi:10.1126/science.1178811. PMID 19933107. 
  9. ^ Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, Xie T, Mahfouz M, Zhu JK, Yan N, Shi Y (Sep 4, 2012). "Recognition of methylated DNA by TAL effectors". Cell Research. 22 (10): 1502–4. doi:10.1038/cr.2012.127. PMC 3463267Freely accessible. PMID 22945353. 
  10. ^ a b c d Morbitzer, R.; Romer, P.; Boch, J.; Lahaye, T. (2010). "Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors". Proceedings of the National Academy of Sciences. 107 (50): 21617–21622. Bibcode:2010PNAS..10721617M. doi:10.1073/pnas.1013133107. PMC 3003021Freely accessible. PMID 21106758. 
  11. ^ a b c d e Miller, J. C.; Tan, S.; Qiao, G.; Barlow, K. A.; Wang, J.; Xia, D. F.; Meng, X.; Paschon, D. E.; Leung, E.; Hinkley, S. J.; Dulay, G. P.; Hua, K. L.; Ankoudinova, I.; Cost, G. J.; Urnov, F. D.; Zhang, H. S.; Holmes, M. C.; Zhang, L.; Gregory, P. D.; Rebar, E. J. (2010). "A TALE nuclease architecture for efficient genome editing". Nature Biotechnology. 29 (2): 143–148. doi:10.1038/nbt.1755. PMID 21179091. 
  12. ^ a b Huang, P.; Xiao, A.; Zhou, M.; Zhu, Z.; Lin, S.; Zhang, B. (2011). "Heritable gene targeting in zebrafish using customized TALENs". Nature Biotechnology. 29 (8): 699–700. doi:10.1038/nbt.1939. PMID 21822242. 
  13. ^ a b Mak, A. N. -S.; Bradley, P.; Cernadas, R. A.; Bogdanove, A. J.; Stoddard, B. L. (2012). "The Crystal Structure of TAL Effector PthXo1 Bound to Its DNA Target". Science. 335: 716–719. Bibcode:2012Sci...335..716M. doi:10.1126/science.1216211. PMC 3427646Freely accessible. PMID 22223736. 
  14. ^ Deng, D.; Yan, C.; Pan, X.; Mahfouz, M.; Wang, J.; Zhu, J. -K.; Shi, Y.; Yan, N. (2012). "Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors". Science. 335: 720–3. Bibcode:2012Sci...335..720D. doi:10.1126/science.1215670. PMC 3586824Freely accessible. PMID 22223738. 
  15. ^ Stella, Stefano; Molina, Rafael; Yefimenko, Igor; Prieto, Jesús; Silva, George; Bertonati, Claudia; Juillerat, Alexandre; Duchateau, Phillippe; Montoya, Guillermo (2013-09-01). "Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism". Acta Crystallographica Section D. 69 (Pt 9): 1707–1716. doi:10.1107/S0907444913016429. ISSN 1399-0047. PMC 3760130Freely accessible. PMID 23999294. 
  16. ^ a b Christian M, Cermak T, Doyle EL, et al. (July 2010). "TAL Effector Nucleases Create Targeted DNA Double-strand Breaks". Genetics. 186 (2): 757–61. doi:10.1534/genetics.110.120717. PMC 2942870Freely accessible. PMID 20660643. 
  17. ^ a b c Zhang, F.; Cong, L.; Lodato, S.; Kosuri, S.; Church, G. M.; Arlotta, P. (2011). "Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription". Nature Biotechnology. 29 (2): 149–53. doi:10.1038/nbt.1775. PMC 3084533Freely accessible. PMID 21248753. 
  18. ^ a b Mahfouz, M. M.; Li, L.; Shamimuzzaman, M.; Wibowo, A.; Fang, X.; Zhu, J. -K. (2011). "De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks". Proceedings of the National Academy of Sciences. 108 (6): 2623–8. Bibcode:2011PNAS..108.2623M. doi:10.1073/pnas.1019533108. PMC 3038751Freely accessible. PMID 21262818. 
  19. ^ Cong, Le; Ruhong Zhou; Yu-chi Kuo; Margaret Cunniff; Feng Zhang (24 July 2012). "Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains". Nature Communications. 968. 3 (7): 968. Bibcode:2012NatCo...3E.968C. doi:10.1038/ncomms1962. PMC 3556390Freely accessible. PMID 22828628. 
  20. ^ a b Geiβler, R.; Scholze, H.; Hahn, S.; Streubel, J.; Bonas, U.; Behrens, S. E.; Boch, J. (2011). Shiu, Shin-Han, ed. "Transcriptional Activators of Human Genes with Programmable DNA-Specificity". PLoS ONE. 6 (5): e19509. Bibcode:2011PLoSO...619509G. doi:10.1371/journal.pone.0019509. PMC 3098229Freely accessible. PMID 21625585. 
  21. ^ a b Li, T.; Huang, S.; Zhao, X.; Wright, D. A.; Carpenter, S.; Spalding, M. H.; Weeks, D. P.; Yang, B. (2011). "Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes". Nucleic Acids Research. 39: 6315–6325. doi:10.1093/nar/gkr188. PMC 3152341Freely accessible. PMID 21459844. 
  22. ^ a b c d Cermak, T.; Doyle, E. L.; Christian, M.; Wang, L.; Zhang, Y.; Schmidt, C.; Baller, J. A.; Somia, N. V.; Bogdanove, A. J.; Voytas, D. F. (2011). "Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting". Nucleic Acids Research. 39 (12): e82. doi:10.1093/nar/gkr218. PMC 3130291Freely accessible. PMID 21493687. 
  23. ^ Morbitzer, R.; Elsaesser, J.; Hausner, J.; Lahaye, T. (2011). "Assembly of custom TALE-type DNA binding domains by modular cloning". Nucleic Acids Research. 39: 5790–5799. doi:10.1093/nar/gkr151. PMC 3141260Freely accessible. PMID 21421566. 
  24. ^ Weber, E.; Gruetzner, R.; Werner, S.; Engler, C.; Marillonnet, S. (2011). Bendahmane, Mohammed, ed. "Assembly of Designer TAL Effectors by Golden Gate Cloning". PLoS ONE. 6 (5): e19722. Bibcode:2011PLoSO...619722W. doi:10.1371/journal.pone.0019722. PMC 3098256Freely accessible. PMID 21625552. 
  25. ^ Sanjana, N. E.; Cong, L.; Zhou, Y.; Cunniff, M. M.; Feng, G.; Zhang, F. (2012). "A transcription activator-like effector toolbox for genome engineering". Nature Protocols. 7 (1): 171–192. doi:10.1038/nprot.2011.431. PMC 3684555Freely accessible. PMID 22222791. 
  26. ^ Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM (Aug 2012). "Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers". Nucleic Acids Res. 40: e117. doi:10.1093/nar/gks624. PMC 3424587Freely accessible. PMID 22740649. 
  27. ^ Boissel, Sandrine; Jarjour, Jordan; Astrakhan, Alexander; Adey, Andrew; Gouble, Agnès; Duchateau, Philippe; Shendure, Jay; Stoddard, Barry L.; Certo, Michael T. (2014-02-01). "megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering". Nucleic Acids Research. 42 (4): 2591–2601. doi:10.1093/nar/gkt1224. ISSN 1362-4962. PMC 3936731Freely accessible. PMID 24285304. 
  28. ^ Laura DeFrancesco (2011). "Move over ZFNs". Nature Biotechnology. 29 (8): 681–684. doi:10.1038/nbt.1935. 
  29. ^ Li T, Huang S, Jiang WZ, et al. (August 2010). "TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain". Nucleic Acids Res. 39 (1): 359–72. doi:10.1093/nar/gkq704. PMC 3017587Freely accessible. PMID 20699274. 
  30. ^ Sander, J. D.; Cade, L.; Khayter, C.; Reyon, D.; Peterson, R. T.; Joung, J. K.; Yeh, J. R. J. (2011). "Targeted gene disruption in somatic zebrafish cells using engineered TALENs". Nature Biotechnology. 29 (8): 697–698. doi:10.1038/nbt.1934. PMC 3154023Freely accessible. PMID 21822241. 
  31. ^ Tesson, L.; Usal, C.; Ménoret, S. V.; Leung, E.; Niles, B. J.; Remy, S. V.; Santiago, Y.; Vincent, A. I.; Meng, X.; Zhang, L.; Gregory, P. D.; Anegon, I.; Cost, G. J. (2011). "Knockout rats generated by embryo microinjection of TALENs". Nature Biotechnology. 29 (8): 695–696. doi:10.1038/nbt.1940. PMID 21822240. 
  32. ^ a b Hockemeyer, D.; Wang, H.; Kiani, S.; Lai, C. S.; Gao, Q.; Cassady, J. P.; Cost, G. J.; Zhang, L.; Santiago, Y.; Miller, J. C.; Zeitler, B.; Cherone, J. M.; Meng, X.; Hinkley, S. J.; Rebar, E. J.; Gregory, P. D.; Urnov, F. D.; Jaenisch, R. (2011). "Genetic engineering of human pluripotent cells using TALE nucleases". Nature Biotechnology. 29 (8): 731–734. doi:10.1038/nbt.1927. PMC 3152587Freely accessible. PMID 21738127. 
  33. ^ Wood, A. J.; Lo, T. -W.; Zeitler, B.; Pickle, C. S.; Ralston, E. J.; Lee, A. H.; Amora, R.; Miller, J. C.; Leung, E.; Meng, X.; Zhang, L.; Rebar, E. J.; Gregory, P. D.; Urnov, F. D.; Meyer, B. J. (2011). "Targeted Genome Editing Across Species Using ZFNs and TALENs". Science. 333 (6040): 307. Bibcode:2011Sci...333..307W. doi:10.1126/science.1207773. PMC 3489282Freely accessible. PMID 21700836. 

External links

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

TAL effector repeat Provide feedback

The proteins in this family bind to DNA. Each repeat binds to a base pair in a predictable way [2]. The structure shows that each repeat is composed of two alpha helices [2].

Literature references

  1. Bai J, Choi SH, Ponciano G, Leung H, Leach JE; , Mol Plant Microbe Interact 2000;13:1322-1329.: Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. PUBMED:11106024 EPMC:11106024

  2. Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL;, Science. 2012;335:716-719.: The crystal structure of TAL effector PthXo1 bound to its DNA target. PUBMED:22223736 EPMC:22223736

This tab holds annotation information from the InterPro database.

InterPro entry IPR005042

The proteins in this group bind to DNA. Each repeat binds to a base pair in a predictable way. The structure shows that each repeat is composed of two alpha helices [PUBMED:22223736].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan TPR (CL0020), which has the following description:

Tetratricopeptide-like repeats are found in a numerous and diverse proteins involved in such functions as cell cycle regulation, transcriptional control, mitochondrial and peroxisomal protein transport, neurogenesis and protein folding.

The clan contains the following 149 members:

Adaptin_N Alkyl_sulf_dimr ANAPC3 ANAPC5 ANAPC8 API5 Arm Arm_2 Arm_3 Atx10homo_assoc B56 BAF250_C BTAD CAS_CSE1 ChAPs CHIP_TPR_N CLASP_N Clathrin Clathrin-link Clathrin_H_link Clathrin_propel Cnd1 Cnd3 Coatomer_E Cohesin_HEAT Cohesin_load ComR_TPR COPI_C CPL CRM1_C Cse1 DHR-2 DNA_alkylation Drf_FH3 Drf_GBD DUF1822 DUF2019 DUF2225 DUF3385 DUF3458_C DUF3808 DUF3856 DUF4042 DUF924 EST1 EST1_DNA_bind FAT Fis1_TPR_C Fis1_TPR_N Foie-gras_1 GUN4_N HAT HEAT HEAT_2 HEAT_EZ HEAT_PBS HemY_N HrpB1_HrpK IBB IBN_N IFRD KAP Leuk-A4-hydro_C LRV LRV_FeS MA3 MIF4G MIF4G_like MIF4G_like_2 MMS19_C Mo25 MRP-S27 NARP1 Neurochondrin Nipped-B_C Nro1 NSF Paf67 ParcG PC_rep PHAT PI3Ka PknG_TPR PPP5 PPR PPR_1 PPR_2 PPR_3 PPR_long PPTA Proteasom_PSMB PUF Rab5-bind Rapsyn_N RIX1 RPM2 RPN7 Sel1 SHNi-TPR SNAP SPO22 SRP_TPR_like ST7 Suf SusD-like SusD-like_2 SusD-like_3 SusD_RagB SYCP2_ARLD TAF6_C TAL_effector TAtT Tcf25 TIP120 TOM20_plant TPR_1 TPR_10 TPR_11 TPR_12 TPR_14 TPR_15 TPR_16 TPR_17 TPR_18 TPR_19 TPR_2 TPR_20 TPR_21 TPR_3 TPR_4 TPR_5 TPR_6 TPR_7 TPR_8 TPR_9 TPR_MalT UNC45-central Upf2 V-ATPase_H_C V-ATPase_H_N Vac14_Fab1_bd Vitellogenin_N Vps39_1 W2 Wzy_C_2 Xpo1 YcaO_C YfiO Zmiz1_N


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: RepeatsDB
Previous IDs: Avirulence;
Type: Repeat
Sequence Ontology: SO:0001068
Author: Hirsh L , Tosatto S, Finn RD , Mifsud W , Bateman A
Number in seed: 41
Number in full: 578
Average length of the domain: 33.70 aa
Average identity of full alignment: 68 %
Average coverage of the sequence by the domain: 54.30 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 28.0 10.0
Trusted cut-off 29.4 11.3
Noise cut-off 27.9 9.9
Model length: 33
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


There is 1 interaction for this family. More...



For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the TAL_effector domain has been found. There are 545 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...