Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
14  structures 2495  species 2  interactions 2588  sequences 4  architectures

Family: MinE (PF03776)

Summary: Septum formation topological specificity factor MinE

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Septum formation topological specificity factor MinE Provide feedback

The E. coli minicell locus was shown to code for three gene products (MinC, MinD, and MinE) whose coordinate action is required for proper placement of the division septum. The minE gene codes for a topological specificity factor that, in wild-type cells, prevents the division inhibitor from acting at internal division sites while permitting it to block septation at polar sites [1].

Literature references

  1. de Boer PA, Crossley RE, Rothfield LI; , Cell 1989;56:641-649.: A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. PUBMED:2645057 EPMC:2645057


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR005527

Cytokinesis needs to be regulated spatially in order to ensure that it occurs between the daughter genomes. In prokaryotes such as Escherichia coli, cytokinesis is initiated by FtsZ, a tubulin-like protein that assembles into a ring structure at the cell centre called the Z ring. A fundamental problem in prokaryotic cell biology is to understand how the midcell division site is identified. Two major negative regulatory systems are known to be involved in preventing Z-ring assembly at all sites except the midcell. One of these systems, called nucleoid occlusion, blocks Z-ring assembly in the area occupied by an unsegregated nucleoid until a critical stage in chromosome replication or segregation is reached. The other system consists of three proteins, MinC, MinD and MinE, which prevent assembly of Z rings in regions of the cell not covered by the nucleoid, such as the cell poles. MinC is an inhibitor of FtsZ polymerisation, resulting in the inhibition of Z ring assembly in the cell; MinD greatly enhances the inhibitory effects of MinC in vivo; and MinE antagonizes the effects of MinC and MinD [PUBMED:11378404].

MinE is a small bifunctional protein. The amino terminus of MinE is required to interact with MinD, while the carboxyl terminus is required for `topological specificity' - that is, the ability of MinE to antagonise MinCD inhibition of Z rings at the midcell position but not at the poles [PUBMED:2645057].

This entry also include plant MinE1 located in chloroplasts. AtMinE1 acts as a topological specificity factor during plastid division and specify plastid constriction sites [PUBMED:11743109].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(298)
Full
(2588)
Representative proteomes UniProt
(7492)
NCBI
(5543)
Meta
(152)
RP15
(560)
RP35
(1620)
RP55
(2561)
RP75
(4025)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(298)
Full
(2588)
Representative proteomes UniProt
(7492)
NCBI
(5543)
Meta
(152)
RP15
(560)
RP35
(1620)
RP55
(2561)
RP75
(4025)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(298)
Full
(2588)
Representative proteomes UniProt
(7492)
NCBI
(5543)
Meta
(152)
RP15
(560)
RP35
(1620)
RP55
(2561)
RP75
(4025)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: COG0851
Previous IDs: none
Type: Family
Sequence Ontology: SO:0100021
Author: Bateman A
Number in seed: 298
Number in full: 2588
Average length of the domain: 68.60 aa
Average identity of full alignment: 36 %
Average coverage of the sequence by the domain: 69.42 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.0 25.0
Trusted cut-off 25.1 25.2
Noise cut-off 24.8 24.7
Model length: 68
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

CbiA MinE

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the MinE domain has been found. There are 14 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...