Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 13  species 0  interactions 81  sequences 7  architectures

Family: OGFr_III (PF04680)

Summary: Opioid growth factor receptor repeat

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "OGFr". More...

OGFr Edit Wikipedia article

Aliases OGFR, OGFr, opioid growth factor receptor
External IDs MGI: 1919325 HomoloGene: 7199 GeneCards: OGFR
Gene location (Human)
Chromosome 20 (human)
Chr. Chromosome 20 (human)[1]
Chromosome 20 (human)
Genomic location for OGFR
Genomic location for OGFR
Band 20q13.33 Start 62,804,835 bp[1]
End 62,814,000 bp[1]
RNA expression pattern
PBB GE OGFR 202841 x at fs.png

PBB GE OGFR 211512 s at fs.png

PBB GE OGFR 210443 x at fs.png
More reference expression data
Species Human Mouse
RefSeq (mRNA)



RefSeq (protein)



Location (UCSC) Chr 20: 62.8 – 62.81 Mb Chr 20: 180.59 – 180.6 Mb
PubMed search [3] [4]
View/Edit Human View/Edit Mouse
Opioid growth factor receptor (OGFr) conserved region
Symbol OGFr_N
Pfam PF04664
InterPro IPR006757
Opioid growth factor receptor repeat
Symbol OGFr_III
Pfam PF04680
InterPro IPR006770

Opioid growth factor receptor, also known as OGFr or the ζ-opioid receptor, is a protein which in humans is encoded by the OGFR gene.[5][6] The protein encoded by this gene is a receptor for opioid growth factor (OGF), also known as [Met(5)]-enkephalin. The endogenous ligand is thus a known opioid peptide, and OGFr was originally discovered and named as a new opioid receptor zeta (ζ). However it was subsequently found that it shares little sequence similarity with the other opioid receptors, and has quite different function.


The natural function of this receptor appears to be in regulation of tissue growth,[7][8][9][10] and it has been shown to be important in embryonic development,[11] wound repair,[12] and certain forms of cancer.[13][14][15][16]

OGF is a negative regulator of cell proliferation and tissue organization in a variety of processes. The encoded unbound receptor for OGF has been localized to the outer nuclear envelope, where it binds OGF and is translocated into the nucleus. The coding sequence of this gene contains a polymorphic region of 60 nt tandem imperfect repeat units. Several transcripts containing between zero and eight repeat units have been reported.[5]

Mechanism of activation

The opioid growth factor receptor consists of a chain of 677 amino acids, which includes a nuclear localization sequence region. When OGF binds to the receptor, an OGF-OGFr complex is formed, which leads to the increase in the synthesis of the selective cyclin-dependent kinase (CDK) inhibitor proteins, p12 and p16. Retinoblastoma protein becomes activated through the phosphorylation from CDKs, and leads to the progression of the cell cycle from the G1 phase to the S phase. Because the activation of the OGF receptor, blocks the phosphorylation of retinoblastmoa proteins, retardation of the G1 phase occurs, which prevents the cell from further dividing.[17][18]

Therapeutic applications

Upregulation of OGFr and consequent stimulation of the OGF-OGFr system are important for the anti-proliferative effects of imidazoquinoline drugs like imiquimod and resiquimod, which are immune response modifiers with potent antiviral and antitumour effects, used as topical creams for the treatment of skin cancers and warts.[19]


OGF contains a conserved N-terminal domain followed by a series of imperfect repeats.[8]


  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000060491 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000049401 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". 
  4. ^ "Mouse PubMed Reference:". 
  5. ^ a b "Entrez Gene: OGFR opioid growth factor receptor". 
  6. ^ Zagon IS, Verderame MF, Allen SS, McLaughlin PJ (February 2000). "Cloning, sequencing, chromosomal location, and function of cDNAs encoding an opioid growth factor receptor (OGFr) in humans". Brain Res. 856 (1-2): 75–83. doi:10.1016/S0006-8993(99)02330-6. PMID 10677613. 
  7. ^ Wu Y, McLaughlin PJ, Zagon IS (April 1998). "Ontogeny of the opioid growth factor, Met5-enkephalin, preproenkephalin gene expression, and the zeta opioid receptor in the developing and adult aorta of rat". Dev. Dyn. 211 (4): 327–37. doi:10.1002/(SICI)1097-0177(199804)211:4<327::AID-AJA4>3.0.CO;2-J. PMID 9566952. 
  8. ^ a b Zagon IS, Verderame MF, McLaughlin PJ (February 2002). "The biology of the opioid growth factor receptor (OGFr)". Brain Res. Brain Res. Rev. 38 (3): 351–76. doi:10.1016/S0165-0173(01)00160-6. PMID 11890982. 
  9. ^ Malendowicz LK, Rebuffat P, Tortorella C, Nussdorfer GG, Ziolkowska A, Hochol A (May 2005). "Effects of met-enkephalin on cell proliferation in different models of adrenocortical-cell growth". Int. J. Mol. Med. 15 (5): 841–5. doi:10.3892/ijmm.15.5.841. PMID 15806307. 
  10. ^ Cheng F, McLaughlin PJ, Verderame MF, Zagon IS (January 2009). "The OGF-OGFr axis utilizes the p16INK4a and p21WAF1/CIP1 pathways to restrict normal cell proliferation". Molecular Biology of the Cell. 20 (1): 319–27. doi:10.1091/mbc.E08-07-0681. PMC 2613082Freely accessible. PMID 18923142. 
  11. ^ Zagon IS, Wu Y, McLaughlin PJ (August 1999). "Opioid growth factor and organ development in rat and human embryos". Brain Res. 839 (2): 313–22. doi:10.1016/S0006-8993(99)01753-9. PMID 10519055. 
  12. ^ Sassani JW, Zagon IS, McLaughlin PJ (May 2003). "Opioid growth factor modulation of corneal epithelium: uppers and downers". Curr. Eye Res. 26 (5): 249–62. doi:10.1076/ceyr. PMID 12854052. 
  13. ^ Zagon IS, Smith JP, McLaughlin PJ (March 1999). "Human pancreatic cancer cell proliferation in tissue culture is tonically inhibited by opioid growth factor". Int. J. Oncol. 14 (3): 577–84. doi:10.3892/ijo.14.3.577. PMID 10024694. 
  14. ^ McLaughlin PJ, Levin RJ, Zagon IS (May 1999). "Regulation of human head and neck squamous cell carcinoma growth in tissue culture by opioid growth factor". Int. J. Oncol. 14 (5): 991–8. doi:10.3892/ijo.14.5.991. PMID 10200353. 
  15. ^ Cheng F, Zagon IS, Verderame MF, McLaughlin PJ (November 2007). "The opioid growth factor (OGF)-OGF receptor axis uses the p16 pathway to inhibit head and neck cancer". Cancer Research. 67 (21): 10511–8. doi:10.1158/0008-5472.CAN-07-1922. PMID 17974995. 
  16. ^ Donahue RN, McLaughlin PJ, Zagon IS (March 2009). "Cell Proliferation of Human Ovarian Cancer is Regulated by the Opioid Growth Factor - Opioid Growth Factor Receptor Axis". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 296 (6): R1716–25. doi:10.1152/ajpregu.00075.2009. PMID 19297547. 
  17. ^ Zagon IS, Donahue RN, McLaughlin PJ (2009). "Opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 297 (4): R1154–61. doi:10.1152/ajpregu.00414.2009. PMID 19675283. 
  18. ^ Avella DM, Kimchi ET, Donahue RN, Tagaram HR, McLaughlin PJ, Zagon IS, Staveley-O'Carroll KF (2010). "The opioid growth factor-opioid growth factor receptor axis regulates cell proliferation of human hepatocellular cancer". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 298 (2): R459–66. doi:10.1152/ajpregu.00646.2009. PMC 2828179Freely accessible. PMID 19923357. 
  19. ^ Zagon IS, Donahue RN, Rogosnitzky M, McLaughlin PJ (August 2008). "Imiquimod upregulates the opioid growth factor receptor to inhibit cell proliferation independent of immune function". Experimental Biology and Medicine (Maywood, N.J.). 233 (8): 968–79. doi:10.3181/0802-RM-58. PMID 18480416. 

Further reading

This article incorporates text from the public domain Pfam and InterPro IPR006757

This article incorporates text from the public domain Pfam and InterPro IPR006770

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Opioid growth factor receptor repeat Provide feedback

Proline-rich repeat found only in a human opioid growth factor receptor [1].

Literature references

  1. Zagon IS, Verderame MF, McLaughlin PJ; , Brain Res Brain Res Rev 2002;38:351-376.: The biology of the opioid growth factor receptor (OGFr). PUBMED:11890982 EPMC:11890982

This tab holds annotation information from the InterPro database.

InterPro entry IPR006770

Opioid peptides act as growth factors in neural and non-neural cells and tissues, in addition to serving for neurotransmission/neuromodulation in the nervous system. The native opioid growth factor (OGF), [Met(5)]-enkephalin, is an inhibitory peptide that plays a role in cell proliferation and tissue organisation during development, cancer, cellular renewal, wound healing, and angiogenesis. OGF action is mediated by a receptor mechanism, the receptor for OGF (OGFr) is an integral membrane protein associated with the nucleus.

OGFr is distinguished by containing a series of imperfect repeats. This entry describes a proline-rich repeat found in a human opioid growth factor receptor [PUBMED:11890982].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes UniProt
Jalview View  View  View  View  View  View  View  View   
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes UniProt

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes UniProt
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_4529 (release 7.5)
Previous IDs: OGFr_repeat;
Type: Repeat
Sequence Ontology: SO:0001068
Author: Waterfield DI , Finn RD
Number in seed: 3
Number in full: 81
Average length of the domain: 21.30 aa
Average identity of full alignment: 63 %
Average coverage of the sequence by the domain: 9.90 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 45638612 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 19.5 19.5
Trusted cut-off 19.6 19.6
Noise cut-off 18.9 19.0
Model length: 20
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls


Weight segments by...

Change the size of the sunburst


Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence


Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.