Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
5  structures 29  species 0  interactions 41  sequences 1  architecture

Family: ApoC-I (PF04691)

Summary: Apolipoprotein C-I (ApoC-1)

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Apolipoprotein C1". More...

Apolipoprotein C1 Edit Wikipedia article

Apolipoprotein C-I

PDB rendering based on 1ioj.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbol APOC1
External IDs OMIM107710 MGI88053 HomoloGene1244 GeneCards: APOC1 Gene
Orthologs
Species Human Mouse
Entrez 341 11812
Ensembl ENSG00000130208 ENSMUSG00000040564
UniProt P02654 P34928
RefSeq (mRNA) NM_001645 NM_001110009
RefSeq (protein) NP_001636 NP_001103479
Location (UCSC) Chr 19:
45.42 – 45.42 Mb
Chr 7:
19.69 – 19.69 Mb
PubMed search [1] [2]
ApoC-I
PDB 1eze EBI.jpg
structural studies of a baboon (papio sp.) plasma protein inhibitor of cholesteryl ester transferase.
Identifiers
Symbol ApoC-I
Pfam PF04691
InterPro IPR006781
SCOP 1ale
SUPERFAMILY 1ale

Apolipoprotein C-I is a protein component of lipoproteins that in humans is encoded by the APOC1 gene.[1][2]

Function[edit]

The protein encoded by this gene is a member of the apolipoprotein C family. This gene is expressed primarily in the liver, and it is activated when monocytes differentiate into macrophages. A pseudogene of this gene is located 4 kb downstream in the same orientation, on the same chromosome. This gene is mapped to chromosome 19, where it resides within an apolipoprotein gene cluster. Alternatively spliced transcript variants have been found for this gene, but the biological validity of some variants has not been determined.[3]

Apolipoprotein C1 has a length of 57 amino acids normally found in plasma and responsible for the activation of esterified lechitin cholesterol with an important role in the exchange of esterified cholesterol between lipoproteins and in removal of cholesterol from tissues. Its main function is inhibition of CETP, probably by altering the electric charge of HDL molecules.

During fasting (like other apolipoprotein C), it is found primarily within HDL, while after a meal it is found on the surface of other lipoproteins. When proteins rich in triglycerides like chylomicrons and VLDL are broken down, this apoprotein is transferred again to HDL. It is one of the most positively charged proteins in the human body.

Interactive pathway map[edit]

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
Statin_Pathway_WP430 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
Statin_Pathway_WP430 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article
|{{{bSize}}}px]]
Statin Pathway edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "Statin_Pathway_WP430". 

References[edit]

  1. ^ Tata F, Henry I, Markham AF, Wallis SC, Weil D, Grzeschik KH, Junien C, Williamson R, Humphries SE (1985). "Isolation and characterisation of a cDNA clone for human apolipoprotein CI and assignment of the gene to chromosome 19". Hum. Genet. 69 (4): 345–9. doi:10.1007/BF00291654. PMID 2985493. 
  2. ^ Smit M, van der Kooij-Meijs E, Frants RR, Havekes L, Klasen EC (January 1988). "Apolipoprotein gene cluster on chromosome 19. Definite localization of the APOC2 gene and the polymorphic Hpa I site associated with type III hyperlipoproteinemia". Hum. Genet. 78 (1): 90–3. doi:10.1007/BF00291243. PMID 2892779. 
  3. ^ "Entrez Gene: APOC1 apolipoprotein C-I". 

Further reading[edit]



This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Apolipoprotein C-I (ApoC-1) Provide feedback

Apolipoprotein C-I (ApoC-1) is a water-soluble protein component of plasma lipoprotein. It solubalises lipids and regulates lipid metabolism. ApoC-1 transfers among HDL (high density lipoprotein), VLDL (very low-density lipoprotein) and chylomicrons. ApoC-1 activates lecithin:choline acetyltransferase (LCAT), inhibits cholesteryl ester transfer protein, can inhibit hepatic lipase and phospholipase 2 and can stimulate cell growth. ApoC-1 delays the clearance of beta-VLDL by inhibiting its uptake via the LDL receptor-related pathway [1]. ApoC-1 has been implicated in hypertriglyceridemia [2] and Alzheimer's disease [3].

Literature references

  1. Gursky O; , Biochemistry 2001;40:12178-12185.: Solution conformation of human apolipoprotein C-1 inferred from proline mutagenesis: far- and near-UV CD study. PUBMED:11580293 EPMC:11580293

  2. Shachter NS; , Curr Opin Lipidol 2001;12:297-304.: Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. PUBMED:11353333 EPMC:11353333

  3. Petit-Turcotte C, Stohl SM, Beffert U, Cohn JS, Aumont N, Tremblay M, Dea D, Yang L, Poirier J, Shachter NS; , Neurobiol Dis 2001;8:953-963.: Apolipoprotein C-I expression in the brain in Alzheimer's disease. PUBMED:11741391 EPMC:11741391


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR006781

Exchangeable apolipoproteins are water-soluble protein components of lipoproteins that solubilise lipids and regulate their metabolism by binding to cell receptors or activating specific enzymes. Apolipoprotein C-I (ApoC-1) is the smallest exchangeable apolipoprotein and transfers among HDL (high density lipoprotein), VLDL (very low-density lipoprotein) and chlylomicrons. ApoC-1 activates lecithin:choline acetyltransferase (LCAT), inhibits cholesteryl ester transfer protein, can inhibit hepatic lipase and phospholipase 2 and can stimulate cell growth. ApoC-1 delays the clearance of beta-VLDL by inhibiting its uptake via the LDL receptor-related pathway [PUBMED:11580293]. ApoC-1 has been implicated in hypertriglyceridemia [PUBMED:11353333], and Alzheimer s disease [PUBMED:11741391].

ApoC-1 is believed to comprise of two dynamic helices that are stabilised by interhelical interactions and are connected by a short linker region. The minimal folding unit in the lipid-free state of this and other exchangeable apolipoproteins comprises the helix-turn-helix motif formed of four 11-mer sequence repeats.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(6)
Full
(41)
Representative proteomes NCBI
(45)
Meta
(0)
RP15
(2)
RP35
(3)
RP55
(4)
RP75
(13)
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(6)
Full
(41)
Representative proteomes NCBI
(45)
Meta
(0)
RP15
(2)
RP35
(3)
RP55
(4)
RP75
(13)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(6)
Full
(41)
Representative proteomes NCBI
(45)
Meta
(0)
RP15
(2)
RP35
(3)
RP55
(4)
RP75
(13)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: DOMO:DM04729;
Previous IDs: none
Type: Family
Author: Kerrison ND
Number in seed: 6
Number in full: 41
Average length of the domain: 55.00 aa
Average identity of full alignment: 47 %
Average coverage of the sequence by the domain: 71.03 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 27.6 27.6
Trusted cut-off 28.4 30.6
Noise cut-off 26.8 27.5
Model length: 61
Family (HMM) version: 7
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the ApoC-I domain has been found. There are 5 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...