Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
29  structures 1383  species 2  interactions 1902  sequences 37  architectures

Family: SUFU (PF05076)

Summary: Suppressor of fused protein (SUFU)

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Suppressor of fused Sufu protein N terminal domain". More...

Suppressor of fused Sufu protein N terminal domain Edit Wikipedia article

Redirect to:

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Suppressor of fused protein (SUFU) Provide feedback

SUFU, encoding the human orthologue of Drosophila suppressor of fused, appears to have a conserved role in the repression of Hedgehog signaling. SUFU exerts its repressor role by physically interacting with GLI proteins in both the cytoplasm and the nucleus [1]. SUFU has been found to be a tumour-suppressor gene that predisposes individuals to medulloblastoma by modulating the SHH signaling pathway [2]. Genomic contextual analysis of bacterial SUFU versions revealed that they are immunity proteins against diverse nuclease toxins in polymorphic toxin systems [3].

Literature references

  1. Rubin JB, Rowitch DH; , Cancer Cell 2002;2:7-8.: Medulloblastoma: A problem of developmental biology. PUBMED:12150819 EPMC:12150819

  2. Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D; , Nat Genet 2002;31:306-310.: Mutations in SUFU predispose to medulloblastoma. PUBMED:12068298 EPMC:12068298

  3. Zhang D, Iyer LM, Aravind L;, Nucleic Acids Res. 2011;39:4532-4552.: A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. PUBMED:21306995 EPMC:21306995


This tab holds annotation information from the InterPro database.

InterPro entry IPR020941

Sufu, encoding the human ortholog of Drosophila suppressor of fused, appears to have a conserved role in the repression of Hedgehog signalling. It is a repressor of the Gli and Ci transcription factors of the Hedgehog signalling cascade [PUBMED:12150819], and functions by binding these proteins and preventing their translocation to the nucleus. Sufu has been found to be a tumour-suppressor gene that predisposes individuals to medulloblastoma by modulating the SHH signalling pathway [PUBMED:12068298]. Homologues of Sufu have been found in bacteria, though their function is not currently known.

This entry represents a domain found in Sufu and its homologues. It is also found in other proteins that are functionally uncharacterised. In eukaryotic Sufu, an additional domain () is found at the C terminus of the protein. This domain binds to the C-terminal domain of the Gli/Ci transcription factors, inhibiting their activity [PUBMED:15367681].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(120)
Full
(1902)
Representative proteomes UniProt
(7046)
NCBI
(11034)
Meta
(14)
RP15
(178)
RP35
(696)
RP55
(1753)
RP75
(3198)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(120)
Full
(1902)
Representative proteomes UniProt
(7046)
NCBI
(11034)
Meta
(14)
RP15
(178)
RP35
(696)
RP55
(1753)
RP75
(3198)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(120)
Full
(1902)
Representative proteomes UniProt
(7046)
NCBI
(11034)
Meta
(14)
RP15
(178)
RP35
(696)
RP55
(1753)
RP75
(3198)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_6089 (release 7.7)
Previous IDs: none
Type: Family
Sequence Ontology: SO:0100021
Author: Moxon SJ
Number in seed: 120
Number in full: 1902
Average length of the domain: 162.50 aa
Average identity of full alignment: 22 %
Average coverage of the sequence by the domain: 50.66 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 47079205 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.0 21.0
Trusted cut-off 21.1 21.0
Noise cut-off 20.9 20.7
Model length: 172
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

SUFU SUFU_C

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the SUFU domain has been found. There are 29 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein sequence.

Loading structure mapping...