Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
16  structures 361  species 5  interactions 406  sequences 12  architectures

Family: ESCRT-II (PF05871)

Summary: ESCRT-II complex subunit

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "VPS25". More...

VPS25 Edit Wikipedia article

Vacuolar protein sorting 25 homolog (S. cerevisiae)
Protein VPS25 PDB 2ZME.png
Rendering based on PDB 2ZME​.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols VPS25 ; DERP9; EAP20; FAP20
External IDs OMIM610907 MGI106354 HomoloGene6303 GeneCards: VPS25 Gene
RNA expression pattern
PBB GE VPS25 gnf1h00737 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 84313 28084
Ensembl ENSG00000131475 ENSMUSG00000078656
UniProt Q9BRG1 Q9CQ80
RefSeq (mRNA) NM_032353 NM_001284411
RefSeq (protein) NP_115729 NP_001271340
Location (UCSC) Chr 17:
42.77 – 42.78 Mb
Chr 11:
101.25 – 101.26 Mb
PubMed search [1] [2]
ESCRT-II complex subunit
PDB 1xb4 EBI.jpg
crystal structure of subunit vps25 of the endosomal trafficking complex escrt-ii
Identifiers
Symbol ESCRT-II
Pfam PF05871
InterPro IPR008570

Vacuolar protein-sorting-associated protein 25 is a protein that in humans is encoded by the VPS25 gene.[1][2]

It is a component of the endosome-associated complex ESCRT-II (Endosomal Sorting Complexes Required for Transport protein II). ESCRT (ESCRT-I, -II, -III) complexes orchestrate efficient sorting of ubiquitinated transmembrane receptors to lysosomes via multivesicular bodies (MVBs).[3] ESCRT-II recruits the transport machinery for protein sorting at MVB.[4] In addition, the human ESCRT-II has been shown to form a complex with RNA polymerase II elongation factor ELL in order to exert transcriptional control activity. ESCRT-II transiently associates with the endosomal membrane and thereby initiates the formation of ESCRT-III, a membrane-associated protein complex that functions immediately downstream of ESCRT-II during sorting of MVB cargo. ESCRT-II in turn functions downstream of ESCRT-I, a protein complex that binds to ubiquitinated endosomal cargo.[5]

ESCRT-II is a trilobal complex composed of two copies of vps25, one copy of vps22 and the C-terminal region of vps36. The crystal structure of vps25 revealed two winged-helix domains, the N-terminal domain of vps25 interacting with vps22 and vps36.[6]


References

  1. ^ Yorikawa C, Shibata H, Waguri S, Hatta K, Horii M, Katoh K, Kobayashi T, Uchiyama Y, Maki M (Mar 2005). "Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting". Biochem J 387 (Pt 1): 17–26. doi:10.1042/BJ20041227. PMC 1134928. PMID 15511219. 
  2. ^ "Entrez Gene: VPS25 vacuolar protein sorting 25 homolog (S. cerevisiae)". 
  3. ^ Gill DJ, Teo H, Sun J, Perisic O, Veprintsev DB, Emr SD, Williams RL (January 2007). "Structural insight into the ESCRT-I/-II link and its role in MVB trafficking". EMBO J. 26 (2): 600–12. doi:10.1038/sj.emboj.7601501. PMC 1783442. PMID 17215868. 
  4. ^ Teo H, Perisic O, Gonzalez B, Williams RL (October 2004). "ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes". Dev. Cell 7 (4): 559–69. doi:10.1016/j.devcel.2004.09.003. PMID 15469844. 
  5. ^ Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD (August 2002). "Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body". Dev. Cell 3 (2): 283–9. doi:10.1016/S1534-5807(02)00219-8. PMID 12194858. 
  6. ^ Wernimont AK, Weissenhorn W (December 2004). "Crystal structure of subunit VPS25 of the endosomal trafficking complex ESCRT-II". BMC Struct. Biol. 4 (1): 10. doi:10.1186/1472-6807-4-10. PMC 539351. PMID 15579210. 

Further reading


This article incorporates text from the public domain Pfam and InterPro IPR008570

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

ESCRT-II complex subunit Provide feedback

This family of conserved eukaryotic proteins are subunits of the endosome associated complex ESCRT-II which recruits transport machinery for protein sorting at the multivesicular body (MVB) [1]. This protein complex transiently associates with the endosomal membrane and thereby initiates the formation of ESCRT-III, a membrane-associated protein complex that functions immediately downstream of ESCRT-II during sorting of MVB cargo. ESCRT-II in turn functions downstream of ESCRT-I, a protein complex that binds to ubiquitinated endosomal cargo [1].

Literature references

  1. Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD; , Dev Cell 2002;3:283-289.: Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. PUBMED:12194858 EPMC:12194858

  2. Teo H, Perisic O, Gonzalez B, Williams RL; , Dev Cell 2004;7:559-569.: ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. PUBMED:15469844 EPMC:15469844


This tab holds annotation information from the InterPro database.

InterPro entry IPR008570

This entry represents the vps25 subunit (vacuolar protein sorting-associated protein 25) of the endosome-associated complex ESCRT-II (Endosomal Sorting Complexes Required for Transport protein II). ESCRT (ESCRT-I, -II, -III) complexes orchestrate efficient sorting of ubiquitinated transmembrane receptors to lysosomes via multivesicular bodies (MVBs) [PUBMED:17215868]. ESCRT-II recruits the transport machinery for protein sorting at MVB [PUBMED:15469844]. In addition, the human ESCRT-II has been shown to form a complex with RNA polymerase II elongation factor ELL in order to exert transcriptional control activity. ESCRT-II transiently associates with the endosomal membrane and thereby initiates the formation of ESCRT-III, a membrane-associated protein complex that functions immediately downstream of ESCRT-II during sorting of MVB cargo. ESCRT-II in turn functions downstream of ESCRT-I, a protein complex that binds to ubiquitinated endosomal cargo [PUBMED:12194858].

ESCRT-II is a trilobal complex composed of two copies of vps25, one copy of vps22 and the C-terminal region of vps36. The crystal structure of vps25 revealed two winged-helix domains, the N-terminal domain of vps25 interacting with vps22 and vps35 [PUBMED:15579210].

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan HTH (CL0123), which has the following description:

This family contains a diverse range of mostly DNA-binding domains that contain a helix-turn-helix motif.

The clan contains the following 254 members:

AbiEi_3_N AbiEi_4 ANAPC2 AphA_like Arg_repressor ARID B-block_TFIIIC Bac_DnaA_C BetR Bot1p BrkDBD Cdc6_C CENP-B_N Cro Crp CSN8_PSD8_EIF3K Cullin_Nedd8 CUT DDRGK DEP Dimerisation Dimerisation2 DsrD DUF1133 DUF1153 DUF1323 DUF134 DUF1441 DUF1492 DUF1495 DUF1670 DUF1804 DUF1836 DUF1870 DUF2089 DUF2250 DUF2316 DUF2582 DUF3116 DUF3253 DUF3853 DUF3860 DUF3908 DUF433 DUF4364 DUF4447 DUF480 DUF739 DUF742 DUF977 E2F_TDP EAP30 ELL ESCRT-II Ets Exc F-112 FaeA Fe_dep_repr_C Fe_dep_repress FeoC FokI_C FokI_N Forkhead Ftsk_gamma FUR GcrA GerE GntR HARE-HTH HemN_C HNF-1_N Homeobox Homeobox_KN Homez HPD HrcA_DNA-bdg HSF_DNA-bind HTH_1 HTH_10 HTH_11 HTH_12 HTH_13 HTH_15 HTH_16 HTH_17 HTH_18 HTH_19 HTH_20 HTH_21 HTH_22 HTH_23 HTH_24 HTH_25 HTH_26 HTH_27 HTH_28 HTH_29 HTH_3 HTH_30 HTH_31 HTH_32 HTH_33 HTH_34 HTH_35 HTH_36 HTH_37 HTH_38 HTH_39 HTH_40 HTH_41 HTH_42 HTH_43 HTH_45 HTH_46 HTH_47 HTH_5 HTH_6 HTH_7 HTH_8 HTH_9 HTH_AraC HTH_AsnC-type HTH_CodY HTH_Crp_2 HTH_DeoR HTH_IclR HTH_Mga HTH_micro HTH_OrfB_IS605 HTH_psq HTH_Tnp_1 HTH_Tnp_1_2 HTH_Tnp_4 HTH_Tnp_IS1 HTH_Tnp_IS630 HTH_Tnp_ISL3 HTH_Tnp_Mu_1 HTH_Tnp_Mu_2 HTH_Tnp_Tc3_1 HTH_Tnp_Tc3_2 HTH_Tnp_Tc5 HTH_WhiA HxlR IBD IF2_N IRF KicB KORA KorB La LacI LexA_DNA_bind Linker_histone LZ_Tnp_IS481 MADF_DNA_bdg MarR MarR_2 MerR MerR-DNA-bind MerR_1 MerR_2 Mga Mnd1 Mor MotA_activ MqsA_antitoxin MRP-L20 Myb_DNA-bind_2 Myb_DNA-bind_3 Myb_DNA-bind_4 Myb_DNA-bind_5 Myb_DNA-bind_6 Myb_DNA-bind_7 Myb_DNA-binding Neugrin NUMOD1 OST-HTH P22_Cro PaaX PadR PAX PCI Penicillinase_R Phage_AlpA Phage_antitermQ Phage_CI_repr Phage_CII Phage_rep_org_N Phage_terminase Pou Pox_D5 PuR_N Put_DNA-bind_N Rap1-DNA-bind Rep_3 RepA_C RepA_N RepC RepL Replic_Relax RFX_DNA_binding Ribosomal_S19e Ribosomal_S25 Rio2_N RNA_pol_Rpc34 RP-C RPA RPA_C RQC Rrf2 RTP RuvB_C SAC3_GANP SANT_DAMP1_like SatD SelB-wing_1 SelB-wing_2 SelB-wing_3 SgrR_N Sigma54_CBD Sigma54_DBD Sigma70_ECF Sigma70_ner Sigma70_r2 Sigma70_r3 Sigma70_r4 Sigma70_r4_2 SLIDE SMC_ScpB SpoIIID STN1_2 Sulfolobus_pRN SWIRM TBPIP Terminase_5 TetR_N TFIIE_alpha TFIIE_beta TFIIF_alpha TFIIF_beta Tn7_Tnp_TnsA_C Tn916-Xis TraI_2_C Trans_reg_C TrfA TrmB Trp_repressor UPF0122 Vir_act_alpha_C YdaS_antitoxin YjcQ YokU z-alpha

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database (reference proteomes) using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the UniProtKB sequence database, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(154)
Full
(406)
Representative proteomes UniProt
(962)
NCBI
(880)
Meta
(2)
RP15
(126)
RP35
(227)
RP55
(320)
RP75
(395)
Jalview View  View  View  View  View  View  View  View  View 
HTML View  View               
PP/heatmap 1 View               

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(154)
Full
(406)
Representative proteomes UniProt
(962)
NCBI
(880)
Meta
(2)
RP15
(126)
RP35
(227)
RP55
(320)
RP75
(395)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(154)
Full
(406)
Representative proteomes UniProt
(962)
NCBI
(880)
Meta
(2)
RP15
(126)
RP35
(227)
RP55
(320)
RP75
(395)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_9765 (release 8.0)
Previous IDs: DUF852;
Type: Family
Author: Moxon SJ, Wood V, Mistry J
Number in seed: 154
Number in full: 406
Average length of the domain: 135.20 aa
Average identity of full alignment: 35 %
Average coverage of the sequence by the domain: 55.61 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 11927849 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.0 21.0
Trusted cut-off 22.0 21.8
Noise cut-off 20.7 18.6
Model length: 139
Family (HMM) version: 9
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Hide

Weight segments by...


Change the size of the sunburst

Small
Large

Colour assignments

Archea Archea Eukaryota Eukaryota
Bacteria Bacteria Other sequences Other sequences
Viruses Viruses Unclassified Unclassified
Viroids Viroids Unclassified sequence Unclassified sequence

Selections

Align selected sequences to HMM

Generate a FASTA-format file

Clear selection

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 5 interactions for this family. More...

ESCRT-II Snf7 Snf7 EAP30 EAP30

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the ESCRT-II domain has been found. There are 16 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...